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Abstract

What makes an object complex? Complexity comes in many different forms.

Some objects are visually complex but mechanistically simple (e.g., a hairbrush).

Other objects are the opposite; they look simple but work in a complex way (e.g., an

iPhone). Is one kind of complexity more fundamental to how we represent, attend to,

and remember objects? Although most existing psychological research on complexity

focuses on visual complexity, we argue that mechanistic complexity may be more

consequential: Across five pre-registered experiments (N=780 adults), we show that

mechanistic complexity not only predicts explicit judgments, but also drives visual

attention and memory. Thus, representations of object complexity — and object

representations more broadly — rely on more than just external appearance.
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Statement of Relevance

Every day, we are struck by the complexity of our surroundings. Complexity

affects us both directly — for example, when thinking about how the parts

in a machine work — and indirectly — for example, when appreciating the

beauty of a painting. But what makes an object complex? The way it looks?

Or the way it works? We show that mechanistic complexity — the kind of

complexity beneath an object’s surface — is the more fundamental kind of

object complexity in the mind. In other words, our representations of objects

may be more than meets the eye.
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Introduction

Which is more complex: a bicycle or a car? When faced with this question, most

people answer a car. But how do we make such a judgment? What information do

we use? Reasoning about the “complexity” of an object may imply many different

thoughts or judgments; the car contains more complex inner workings than the bi-

cycle (mechanistic complexity), but the bicycle looks more complex than the car, at

least in silhouette (visual complexity).

In other words, complexity comes in many different kinds. Both appearance

and mechanism correspond to different kinds of object complexity. Other kinds of

object complexity exist too, such as functional complexity (the complexity of what

something can do, Ahl and Keil, 2017). Sometimes, these differing notions of object

complexity are in harmony, as when we appreciate that a helicopter is more complex

than a skateboard. But other times, these notions compete (e.g., bicycle vs. car).

In these cases, it is unclear what it means for an object to be “complex”, or which

notion of complexity wins out over the other (if at all).

We seem to integrate these different kinds into an intuitive understanding of

object complexity. How? And what might the downstream consequences of this

be? One possibility is that among these competing kinds of complexity, one is more

fundamental, meaning that it may dominate our intuitions and even affect implicit

cognitive or visual processes more than another kind. Uncovering a preference for one

kind of complexity would illuminate how we arrive at these intuitive judgments and

reveal signatures of object representations more broadly. Here, we compare visual

and mechanistic complexity to ask which kind informs our representations of object

complexity.
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Complexity in our lives

Complexity drives many of our thoughts every day. For example, when an object

breaks or malfunctions, we may consider whether it is too complex to fix on our own

— making an intuitive judgment of mechanistic complexity (Kominsky et al., 2018).

We may view someone as an “expert” in a field if they are able to describe how a

complex system works, as opposed to just describing how it looks (Hmelo-Silver and

Pfeffer, 2004). When in an art gallery, we may find some paintings too complex or

too simple to be beautiful; instead, we appreciate paintings in a sort of complexity

“sweet spot” (Osborne and Farley, 1970; Sun and Firestone, 2022a).

We make these judgments for all kinds of stimuli — not just visual objects.

We enjoy the complexity of musical passages; we notice the complexity of physical

actions, such as the shooting motion of a basketball player; and we appreciate the

complexity of foods with subtle, complementing flavors. More abstractly, biological

and social systems may be complex (Csete and Doyle, 2002; Kappeler, 2019). Thus,

complexity is prevalent both within the domain of the objects and outside of it.

Importantly, research on object complexity goes beyond explicit judgment, re-

vealing that complexity drives some implicit and automatic behaviors. For example,

previous work establishes links between complexity and memory (Alvarez and Ca-

vanagh, 2004; Mathy and Feldman, 2012), complexity and aesthetic preference (Os-

borne and Farley, 1970; Sun and Firestone, 2022a), complexity and attention (Sun

and Firestone, 2021), and even complexity and children’s ability to learn from televi-

sion (Welch and Watt Jr, 1982). Complexity also relates to language; we map longer

words to more complex objects (Lewis and Frank, 2016), and complexity affects the

length of our object descriptions (Sun and Firestone, 2022b). Finally, complexity also
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affects concept learning (Feldman, 2000, 2003; Ward et al., 2013). Thus, complexity

has many implicit uses that are crucial to cognition.

Perhaps even more immediately, complexity is crucial to the play, exploration,

and curiosity of both humans and animals (Berlyne, 1960, 1966). We seek stimuli

(ranging from toys, to books, to conversations) that pique our interest — and one

way to conceive of this interest is via complexity. Therefore, complexity is a key and

unavoidable part of the natural world (Rescher, 1998). It affects how we see, learn,

and remember.

Complexity in psychology

Despite the importance of object complexity, the concept remains under-defined

in psychology. Many works fundamental to the study of complexity avoid defining

the term, instead opting to contextualize it with similar concepts (for example, in

a seminal discussion of complexity, Berlyne, 1966 often either writes “complexity”

in scare-quotes, or invokes “the properties that we designate by words like novelty,

surprisingness, incongruity, complexity, variability, and puzzlingness”). An expansive

research tradition explores different kinds of object complexity in isolation and asks

how each kind affects behavior. However, these works do not explore how different

kinds relate to each other or combine to form our understanding of object complexity.

In other words, the building blocks of our representations of object complexity remain

under-explored.

In psychological studies of complexity, the term “complexity” is often synonymous

with visual complexity. For example, according to bibliometric data, since 2020,

over 7,730 papers discuss visual complexity in psychology, compared to around 100

for mechanistic complexity, and fewer than 3,000 for “conceptual complexity” (an

umbrella term encompassing higher-level forms of complexity, such as mechanistic
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complexity, functional complexity, etc.).1 A likely cause for this is that various

mathematical proxies exist for visual complexity, such as “visual clutter” (Rosenholtz

et al., 2007), file size (Madan et al., 2018), shape skeletons (Feldman and Singh, 2006;

Sun and Firestone, 2021), and more. Each of these definitions can easily be computed

from an image, making visual complexity an accessible computational metric.2

Computational definitions of this sort do not exist for conceptual complexity.

Though some reasonable proxies exist (e.g., number of parts, number of interactions

between parts, etc.), it is hard to programmatically apply them to batches of images.

These proxies would also be difficult for an algorithm to generalize to different kinds

of stimuli (e.g., abstract objects, stimuli whose inner mechanisms are not visible,

etc.). Perhaps for this reason, conceptual complexity has been relatively ignored.

While psychological research on object complexity is biased towards an object’s

appearance over its mechanism, our everyday lives may tilt the other way. Philo-

sophical analyses of the nature of “complexity” suggest that we rely on mechanistic

complexity often, as it is tied to how we interact with the world. Understanding

mechanisms is crucial to any society for building and repairing objects (Rescher,

1998). This idea is supported by work in developmental psychology suggesting that

children are sensitive to the internal mechanisms of their surroundings (Simons and

Keil, 1995; Lockhart et al., 2019), and that mechanistic representations may even

be innate (Leslie, 1994). Still, visual complexity has its uses too. Research suggests

1This bibliometric data comes from searching Google Scholar with the queries [“visual complex-

ity”, psychology], [“mechanistic complexity”, psychology], and [“conceptual complexity”, psychol-

ogy].
2Note that even in these cases, mathematical definitions of complexity may produce contrasting

results; for example, a pattern of noise may have lots of visual clutter but a low file size. Thus,

complexity is hard to pin down even computationally.
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that visual complexity drives implicit processes such as visual attention and curios-

ity (Sun and Firestone, 2021). In this way, visual complexity may serve a functional

role, signaling to us which objects are worth exploring. However, while these uses

are important, they may not be as crucial as understanding mechanistic complexity,

which more directly affects our ability to interact with objects. Thus, mechanistic

complexity may play a larger role in our lives than visual complexity.

Here, we ask: Do our judgments of object complexity rely on mechanistic infor-

mation more than visual information? Furthermore, might mechanistic complexity

be so important that it even affects implicit processes — in other words, driving

processes previously thought to be affected only by visual complexity, such as visual

attention and visual working memory?

The present experiments

In five pre-registered experiments (depicted schematically in Figure 1), we find

that mechanistic complexity is more fundamental than visual complexity for judg-

ment, attention, and memory. By “more fundamental,” we mean that it seems to

take precedence over visual complexity in driving these processes. In Experiment

1 we gathered ratings of mechanistic complexity and visual complexity on a set of

objects (Figure 1A). We used these ratings as a basis for our later experiments. In

Experiment 2, we gathered ratings of “type-free” complexity — ratings of complexity

where no single kind is specified in the instructions — and found that these ratings

are better predicted by mechanistic complexity than visual complexity. In Exper-

iment 3, we replicated this result with a two-alternative forced-choice task, again

finding a preference for mechanistic complexity (Figure 1B).

But as noted previously, complexity does not only affect explicit judgments — it

also drives implicit processes (e.g., visual attention as in Sun and Firestone, 2021;
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visual working memory as in Alvarez and Cavanagh, 2004). These effects are often

thought to be associated with visual complexity. Given the visual nature of these

tasks, one may expect that mechanistic complexity does not affect performance.

However, a final set of experiments suggests that mechanistic complexity may drive

these implicit processes more than visual complexity (Figure 1C). Experiment 4

found that mechanistic complexity drives performance in a visual search task more

strongly than visual complexity. Experiment 5 found that mechanistic complexity

drives visual working memory. Taken together, these results suggest that our rep-

resentations of object complexity may rely on mechanistic information more than

visual appearance.

Interested readers may view the tasks, exactly as our participants completed

them, on our guide page (https://perceptionstudies.github.io/mechanism).

All experiments were approved by the Yale University Institutional Review Board.

Sample sizes, experimental design, and analysis plans for all experiments were pre-

registered. All of our pre-registrations, experimental code, data, and stimuli are

available on our OSF repository (https://osf.io/csfdq/).

Transparency and openness

All materials, code, and data are available on our OSF repository here: https:

//osf.io/csfdq/. Interested readers may view our experiments — exactly as par-

ticipants did — here: https://perceptionstudies.github.io/mechanism. All

experimental designs, analysis plans, and sample sizes were pre-registered.
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Experiment 1: 
Baseline ratings

How complex is this object in 
terms of how hard it is to draw?

How complex is this object in 
terms of how it works?

Experiment 2: 
Type-free ratings

How complex is this object?  
Think of complexity however you like.

(visual complexity)

(mechanistic complexity)

Experiment 3: 
Type-free 2AFC

Which object is more complex? 
Think of complexity however you like.

OR

Experiment 4: 
Visual search

Are all the objects here the same, or is one 
object different?

Experiment 5: 
Visual working memory

Are the objects in the first array the same or 
different from the objects in the second array?

ISI
850ms (750ms) until response

(A) (B) (C)

Figure 1: Schematic illustration of our five experiments. (A) In Experiment 1, we gathered baseline

ratings for visual and mechanistic complexity to be used in subsequent experiments. Though only

silhouette images are depicted here, we gathered ratings across three levels of realism (words with

no images, words with silhouette images, and words with real object images). (B) In Experiments 2

and 3, we probed which kind of complexity predicts ratings of type-free complexity. Experiment 2

used the same rating task as in Experiment 1, but this time gathered ratings for type-free complexity

(i.e., simply “rate the complexity of the object”). Experiment 3 presented participants with a two-

alternative forced-choice (2AFC) task, in which they had to say which object is more complex. (C)

In Experiments 4 and 5, we asked if mechanistic complexity drives performance in implicit cognitive

tasks. Experiment 4 presented participants with a visual search task, and Experiment 5 consisted

of a visual working memory task. Interested readers may complete all experiments on our guide

page (https://perceptionstudies.github.io/mechanism) and view all materials on our OSF

repository (https://osf.io/csfdq/).
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Experiment 1: Baseline ratings of visual and mech-

anistic complexity

In our first experiment, we gathered ratings of visual and mechanistic complexity

to use as a baseline for later experiments. We chose simple proxy definitions of

each kind of complexity. We gathered ratings for visual complexity by asking “how

complex is the object in terms of how hard it would be to draw,” (in line with number

of “turns”; Attneave, 1957) and for mechanistic complexity by asking “how complex

the object is in terms of how it works” (a direct definition of the concept). In each

condition of this experiment, a set of 50 objects appeared one after another, all in

one of three levels of realism: words with no images (i.e., “how complex is a computer

in terms of how it works”, with no accompanying image), words with accompanying

silhouette images (i.e., the previous instruction appearing alongside a line drawings

of a computer with no color or depth), and words with accompanying real object

images (i.e., the previous instruction appearing alongside a real image of a computer

containing color and depth). We used three different levels of realism to ensure

our results generalize across different ways of conceptualizing the object in question.

For example, one may think that visual complexity ratings differ when one sees an

image, versus when one just reads the word. (Perhaps the image contains several

visually complex contours or features that the participant was not considering when

reading the word on its own.) This experiment does not provide insight into whether

mechanistic or visual complexity is preferred. Rather, it is a necessary baseline for

understanding preferences in later experiments.
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Probing visual complexity

Initially, it may seem odd to ask participants to judge visual complexity in terms

of how hard an object is to draw. After all, why not ask participants to rate visual

complexity for an object “in terms of how it looks,” creating a parallel with how we

probe mechanistic complexity (where participants rate complexity of an object “in

terms of how it works”)?

This is an issue that several other studies of complexity face; when gathering judg-

ments of visual complexity, previous work either creates long definitions of “complex-

ity” to minimize confusion, or provides simple proxies for complexity (for a discussion

of these issues, see Sun and Firestone, 2022b). We chose to gather ratings of visual

complexity with this drawing-based proxy for a few reasons. First, this is a succinct

definition of visual complexity without a long preamble. Second, it is an intuitive

instruction: one can imagine how long it would take to draw something, or how

difficult drawing that thing would be. Third, this metric has precedence in previ-

ous work, which shows that drawing difficulty and visual complexity are intricately

related. Leeuwenberg (1967) finds a near-perfect correlation (r = 0.97) between

drawing (via reproduction) and visual complexity. (Here, Leeuwenberg (1967) oper-

ationalizes “visual complexity” with a theoretical information metric computed over

visual patterns, and this metric correlates with subjective judgments of the com-

plexity of the patterns.) Finally, we verify below that this method of probing visual

complexity resulted in systematic judgments (i.e., judgments that are stable across

stimulus conditions and vary as much as judgments of mechanistic complexity).
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Methods

Participants

We recruited 20 unique participants for each of three levels of object realism

(words only, words with silhouettes, words with real objects) and each of the two

types of complexity (visual or mechanistic complexity), resulting in 120 participants

total. Participants in all experiments and conditions were unique, such that ratings

were independent. Participants were recruited via Prolific (for a discussion of the

reliability of this subject pool, see Peer et al., 2017). Participants were compensated

upon completion of the experiment.

Stimuli and procedure

There were three conditions for the form of stimuli: (1) words only, (2) words with

silhouette images, and (3) words with real object images. There were two conditions

for the instructed form of complexity: (1) visual complexity and (2) mechanistic com-

plexity. In each condition, participants saw all 50 objects in the form corresponding

to their assigned condition (i.e., a participant assigned to the silhouettes condition

sees all 50 objects as silhouettes) and complexity type (i.e., the participant rates the

same type of complexity for all 50 objects). The objects appeared in a randomized

order for each participant. All images were 500 x 500 pixels in participants’ web

browsers.

On each trial, participants rated the complexity of an object on a scale of 1

(least complex) to 9 (most complex) using their keyboard (i.e., they would press the

number corresponding to the rating). In the visual complexity condition, participants

were instructed: “Please rate the visual complexity of [object] (imagine how difficult

they would be to draw), 1 being least complex and 9 being most complex.” In the

mechanistic complexity condition, they were instruction: “Please rate the complexity
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of a [object] in terms of how it works, 1 being least complex and 9 being most

complex.”

Participants who did not submit a complete dataset were excluded; trials with a

response time below 200ms were excluded for being too fast. Across all conditions,

this excluded 0 participants and 45 trials (out of 6,000 total).

Results

This experiment was primarily a baseline needed for later experiments.3 Given

that these ratings serve as a basis for later experiments, it is important to check

that they are consistent. One way we can test this is by correlating object-wise com-

plexity ratings across stimulus conditions; objects rated as complex in one condition

should be rated as complex in the other conditions, too. We observed high corre-

lations across the stimulus conditions for both the mechanistic complexity ratings

(correlation across words and silhouettes r(48) = 0.94, p < .001; silhouettes and real

objects r(48) = 0.94, p < .001; words and real objects r(48) = 0.92, p < .001), and

the visual complexity ratings (correlation across words and silhouettes r(48) = 0.79,

p < .001; silhouettes and real objects r(48) = 0.77, p < .001; words and real objects

r(48) = 0.90, p < .001).

Both visual and mechanistic complexity ratings were similarly variable. The

mean object-wise standard deviations in visual complexity ratings were 1.55, 1.59,

3In an earlier version of this project, we planned to compare illusory effects on visual and

mechanistic complexity before asking which kind of complexity is more fundamental. Therefore, the

pre-registration for this experiment contains predictions and analysis plans for t-tests comparing

complexity ratings across levels of stimuli realism. Because we pre-registered this analysis, we

provide the t-tests and analyses as listed in the pre-registration in our OSF repository: https:

//osf.io/csfdq/. However, these analyses are left out of the current paper.
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and 2.02 in the words, silhouettes, and real object conditions, respectively; they

were 1.80, 1.78, and 1.85 for mechanistic complexity. Thus, differences in subsequent

experiments cannot be explained by one kind of complexity being more variable than

the other. This also shows that our instructions for visual complexity in fact produce

systematic judgments. Therefore, these results serve as a reasonable baseline for later

experiments.

Experiment 2: Ratings of type-free complexity

After gathering ratings of mechanistic and visual complexity for each object, we

asked: Which kind better predicts ratings of type-free complexity (i.e., ratings of

complexity where participants are not instructed to think of one specific kind)? In

other words, if we give a new set of participants the same rating task, but now ask

everyone to simply “rate the complexity of the [object]” (and that they can think of

complexity “however [they] like”), will these ratings be more correlated with visual

or mechanistic complexity? A preference for either type of complexity may suggest

that intuitive ratings of object complexity are more aligned with that type.

Methods

Participants

As before, we recruited 20 unique participants for each of our three stimulus

conditions, resulting in 60 participants.

Stimuli and procedure

The design of this experiment was identical to that of Experiment 1, except for

the instructions. Rather than being told to rate the visual or mechanistic complexity

of an object, participants were told to simply rate its complexity (type-free), and that
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they could think of complexity however they want. As before, participants made this

judgment by pressing the corresponding key on their keyboard from 1 (least complex)

to 9 (most complex).

Trials with response times below 200ms were excluded for being too fast. There

were 0 participants excluded and 0 trials excluded across each of our three stimulus

conditions.

Results

Across all three levels of realism, we observed higher correlations between type-

free complexity and mechanistic complexity than between type-free complexity and

visual complexity (Figure 2A). Both types of complexity had strong and signifi-

cant correlations to type-free complexity ratings (p < .001 in all correlations), but

the mechanistic r values were comparatively higher in each condition: words-only

mechanistic r(48) = 0.94 vs. words-only visual r(48) = 0.72; silhouettes mecha-

nistic r(48) = 0.92 vs. silhouettes visual r(48) = 0.85; real objects mechanistic

r(48) = 0.96 vs. real objects visual r(48) = 0.83.4,5

4Though these differences in correlation coefficients are quite large, it is possible that only

a few objects drive this difference, and that it actually does not reflect a broad preference for

mechanistic complexity. To address this, we performed a bootstrap simulation. Each simulation

consisted of 1000 iterations in which the objects included in the correlation were randomly sampled

with replacement. In the words only condition, all 1000 iterations of the simulation resulted in a

higher correlation coefficient for mechanistic complexity. In the silhouettes condition, mechanistic

ratings had a higher correlation coefficient in 980/1000 iterations, and in the real objects condition,

mechanistic complexity was better-correlated with type-free complexity in all 1000 simulations once

again. Thus, this effect pervades our entire stimulus set.
5Another way to compare the strength of these relationships is by placing both visual and

mechanistic complexity into a linear regression that predicts type-free complexity. We can then
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In other words, intuitive complexity ratings were better predicted by mechanistic

complexity than visual complexity. This provides initial evidence for a preference for

mechanistic complexity when judging objects.
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Figure 2: Results from our explicit rating tasks, in which we found a preference for mechanis-

tic complexity. (A) In Experiment 2, participants rated the type-free complexity of objects from

1-9. We correlated these ratings with the ratings we gathered in Experiment 1, and found higher

correlations between type-free complexity and mechanistic complexity than between type-free com-

plexity and visual complexity in all three conditions. Error bars are 95% confidence intervals of

the correlation coefficients. (B) In Experiment 3, participants performed a forced-choice task in

which they said which of two objects was more complex. We counted the number of “wins” for

each object, and asked wins were predicted by each kind of complexity. As before, we observed

a higher correlation between mechanistic complexity and the number of object wins than between

visual complexity and the number of object wins.

compare the coefficients of each kind of complexity. We fit three models — one for each level of

stimulus realism level. In all three, the coefficients of mechanistic complexity were significantly

different from 0 (with p < .001 in each), as were the coefficients of visual complexity (although less

so, with p < .05 in each). The coefficient of mechanistic complexity was significantly higher than

that of visual complexity in the words only and real objects models (p < .001 in both), but not in

the silhouettes model.

16



Experiment 3: Forced-choice complexity

Although our previous results point to a preference for mechanistic complexity,

it is possible that a rating task taps into complexity in a way that differs from how

we experience it every day. When we judge the complexity of an object, we do

not do so by rating it from 1-9. Rather, we may do so by comparing it to another

object (or comparing it to an object in memory, such as when we buy a new phone

or computer). Perhaps the previous rating task induced odd task demands that

tapped into a different notion of “complexity” (or even task demands unrelated to

complexity itself, such as order effects). Here, we addressed these potential issues

by presenting participants with a two-alternative forced-choice (2AFC) task instead

of a rating task. On each trial, participants said which of two objects (randomly

selected from our stimulus set, appearing as words only) is more complex. With

these judgments, we generated well-powered ratings of object complexity, and then

asked whether these ratings aligned more with mechanistic complexity or with visual

complexity.

Methods

Participants

100 new participants were recruited for this study. This sample size was larger

than what we used for the rating tasks given that converting 2AFC choices into

stable rankings requires more data.

Stimuli and procedure

Participants performed a simple 2AFC task with 100 trials. On each trial, two

objects were chosen at random from our stimulus set, and participants said which is
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more complex (as before, participants were instructed that they can think of complex-

ity “however you want”). The objects appeared as words only (i.e., no accompanying

images). Participants said which object they thought was more complex by pressing

a key on their keyboard (‘1’ if they thought object 1 was more complex, ‘2’ if they

thought object 2 was more complex).

We converted these choices into ratings of object complexity by counting the

number of “wins” for each object. In other words, the most complex object was the

object that was chosen the most (i.e., had the most wins) and the least complex

object was the object that was chosen the least (i.e., had the fewest wins). We

correlated the number of wins here to the words-only ratings for mechanistic and

visual complexity (as gathered in Experiment 1). Note that we also tested two more

mathematically rigorous methods of ranking which account for opponent “strength”

and number of “games” (ELO and a Bradley-Terry model). These more rigorous

methods returned nearly identical results to our initial method, so we used the wins

method for simplicity. (The results from all three methods are available in our OSF

repository here https://osf.io/csfdq/.)

As in Experiments 1 and 2, trials with a response time below 200ms were ex-

cluded; this excluded 2 trials total (out of 10,000). All 100 participants submitted a

full data set, so 0 participants were excluded.

Results

As before, we observed a preference for mechanistic complexity over visual com-

plexity; mechanistic complexity r(48) = 0.89 vs. visual complexity r(48) = 0.70
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(both have p < 0.001; Figure 2B).6,7 This experiment replicates the preference for

mechanistic complexity from Experiment 2 in a new task. Arriving at similar re-

sults despite the difference in task and analysis (i.e., this task and analysis results

in a generative ranking of objects, whereas the last one is simply a correlation be-

tween ratings) points to a consistent preference for mechanistic complexity in judging

objects.

Experiment 4: Visual search

Our previous two experiments show that mechanism is more important than

appearance for judgments of object complexity. This is perhaps to be expected:

Mechanistic complexity may be more important to our everyday lives (Rescher, 1998),

and thus it may predict judgments more than visual complexity. However, might

mechanistic complexity be so important that it is computed spontaneously, even

when not strictly or explicitly required by a task?

Previous research shows that object complexity drives performance in a variety

of implicit tasks where one does not need to judge complexity, such as visual search

(Sun and Firestone, 2021). However, many of these works show the effect of visual

complexity on implicit visual tasks. They relatively ignore mechanistic complexity,

perhaps because one does not need to extract mechanistic complexity to complete

6Using the same bootstrap method as before, we observed higher r values for mechanistic com-

plexity in 997/1000 simulations, suggesting that this preference pervades the full range of objects.
7As before, we compared the regression coefficients of mechanistic and visual complexity for

predicting the number of wins. The coefficient of mechanistic complexity was higher than that

of visual complexity, and this difference was significant (p < .001). Note that both coefficients

were significantly different from 0 (p < .001 for the mechanistic coefficient, p < .05 for the visual

coefficient).
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such tasks. If mechanistic complexity is more important than visual complexity even

in implicit visual tasks, that would provide additional evidence for the importance

of mechanism.

Here, we adapted the visual search task in Sun and Firestone (2021). They find

a “search asymmetry” (Wolfe, 2001) for visual complexity; participants were faster

to find a visually complex target surrounded by visually simple distractors than vice

versa, perhaps because complexity provides a signal that a visual object should be

explored further. With this result, Sun and Firestone (2021) suggest that visual

complexity is extracted automatically and modulates attention. Here, we ask if this

result might apply to mechanistic complexity. In other words, does mechanistic

complexity drive performance in a visual search task more than visual complexity?

We ask if participants display a search asymmetry for mechanistic complexity over

visual complexity. This would be evidenced by faster response times to find a mech-

anistically complex, visually simple target surrounded by mechanistically simple,

visually complex distractors than to find a visually complex, mechanistically simple

target surrounded by visually simple, mechanistically complex distractors (as in Sun

and Firestone, 2021). Importantly, this design allows us to isolate the importance of

mechanistic complexity. If participants were only computing visual complexity (and

ignoring mechanistic complexity), then we would observe the same results as Sun

and Firestone, 2021 — a search asymmetry in the opposite direction of our predic-

tion. However, observing a search asymmetry for mechanistic complexity over visual

complexity suggests that mechanistic complexity may being extracted and used in

visual search. This would be especially striking, as one may expect visual complexity

to drive performance more than mechanistic complexity in visual tasks.
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Methods

Participants

200 new participants were recruited for this study. This sample was larger than

our previous sample sizes, and larger than the sample size in Sun and Firestone

(2021) due to differences between our studies; our participants were recruited online

(as opposed to their in-person participants) and completed fewer trials. Furthermore,

we anticipated a more subtle effect than Sun and Firestone (2021); whereas they ask

about an asymmetry between visually simple and visually complex objects, we ask

for an asymmetry between two different kinds of complexity.

Stimuli and procedure

Using our results from Experiment 1, we chose 10 objects with a high divergence in

visual and mechanistic complexity — 5 objects with high mechanistic complexity and

low visual complexity, and 5 objects with high visual complexity and low mechanistic

complexity. The 5 mechanistically complex, visually simple objects were: phone,

rocket, monitor, headphones, and tractor; the 5 visually complex, mechanistically

simple objects were: tree, comb, backpack, shoe, and curtains.

On each trial, participants saw 6 objects appear as silhouette images in random

positions (out of 16 possible positions in an invisible 4-by-4 grid) and had to say

whether all the objects were the same, or if one was different. Participants were

told to respond as fast as they can. In line with the design in Sun and Firestone

(2021), we had four trial types: mechanistic target (meaning that a random mech-

anistically complex object appeared alongside 5 of the same mechanistically simple

distractors), visual target (the same as mechanistic target, but with a visually com-

plex object appearing alongside 5 visually simple distractors), all mechanistic (all 6

objects presented are mechanistically complex), and all visual (all 6 objects presented
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are visually complex). Participants completed 50 trials of each type (200 total) in a

random order. The specific objects of each type appearing in each trial were chosen

randomly, as was their position in the grid.

Stimuli were chosen in a contrasting way such that we could examine an asym-

metry between the two kinds of complexity. For example, in the mechanistic target

trials, a mechanistically complex object appeared alongside 5 mechanistically simple

distractors. Because the objects chosen have high divergences in mechanistic and

visual complexity, an alternative way to view the mechanistic target trials is that

we presented a visually simple object alongside 5 visually complex distractors. How-

ever, if visual complexity alone was driving the results, we would observe the opposite

asymmetry of the one we predict — as shown in Sun and Firestone, 2021. This de-

sign ensured that an asymmetry for mechanistic target trials over visual target trials

is in fact due to mechanistic complexity.

Note that we do not analyze the “all mechanistic” and “all visual” trials, as there

is no asymmetry in those trials (and thus there is no effect to analyze). However,

we still included these trials such that the number of all-same trials would equal the

number of one-different trials. Also note, for example, that we do not present tri-

als where a mechanistically complex target appears among different mechanistically

complex distractors; this is because, as above (and like Sun and Firestone, 2021),

we are seeking a search asymmetry between levels of complexity. Trials presenting

target stimuli of the same level of complexity as the distractors would contain no

asymmetry.

As per our pre-registered analysis plans, we excluded participants who scored

below 80% accuracy, and we excluded trials with a response time below 200ms or

above 2000ms. 6 of 200 subjects did not submit a complete dataset, and 4 additional

subjects were excluded by the accuracy criteria (leaving 190 subjects total); 1,887
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of the remaining 38,000 trials were excluded by our response time criteria. Our

subsequent response-time analysis is done only on trials where participants responded

correctly.

Results

If mechanistic complexity drives behavior even in implicit, visual tasks, then we

should observe a search asymmetry for it. This would be seen through faster response

times for mechanistic target trials (where participants search for a mechanistically

complex object surrounded by mechanistically simple distractors) than for visual

target trials (where participants search for a visually complex object surrounded by

visually simple distractors). And this is exactly what we observe: On mechanistic

target trials, the mean subject response time was 803ms, compared to 820ms in the

visual target trials (t(189) = −4.38, p < .001; 95% CI of differences = [-24.93, -9.46];

d = 0.32; Figure 3A). Furthermore, this effect was not merely driven by a small

subset of subjects; 117 of 190 subjects (62%) had numerically faster mean response

times on mechanistic target trials than visual target trials, in line with the direction

of our effect. Therefore, mechanistic complexity seems to drive performance more

strongly than visual complexity in a visual search task. In other words, even in an

implicit visual task (where one does not need to compute mechanistic complexity to

perform the task), mechanistic complexity may matter more than visual complexity.8

It may have been expected for mechanistic complexity to be preferred over vi-

sual complexity for intuitive judgments. But here, we show that the mechanistic

8Note that this does not contradict results from Sun and Firestone (2021), as their research

question did not necessitate testing different kinds of complexity. Furthermore, they tested ab-

stract shapes and blobs that had no “mechanism,” and thus mechanistic complexity was not in the

hypothesis space.
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complexity may be more important than visual complexity even for visual search.

Perhaps mechanistic complexity is so important to our everyday representations of

object complexity that the mind extracts it automatically, even above more readily-

available visual information.

E5: Visual working memory 

M
ea

n
 R

T 
(m

s)

650

700

750

800

850

Mechanistic target Visual target

***

E4: Visual search (A) (B)

M
ea

n
 a

cc
u

ra
cy

50%

60%

70%

80%

90%

100%

Mechanistic arrays Visual arrays

***

Figure 3: Results from our implicit cognitive tasks, in which we found that mechanistic complexity

drives visual attention and visual working memory more than visual complexity. (A) Results from

our visual search task in Experiment 4. Participants were faster to find a mechanistically complex

object among mechanistically simple distractors (“mechanistic target”) than they were to find a

visually complex object among visually simple distractors (“visual target”; p < .001). (B) Results

from our visual working memory task in Experiment 5. Participants were better at remembering

arrays of mechanistically complex objects than arrays of visually complex objects (p < .001). Error

bars show 95% confidence intervals for the difference between groups.

Experiment 5: Visual working memory

Our results from Experiment 4 suggest that mechanistic complexity may affect

performance in visual tasks previously thought to be affected only by visual complex-

ity. To further show how mechanistic complexity drives implicit visual behaviors, we

asked whether mechanistic complexity may also drive visual working memory. Are

mechanistically complex objects easier to remember than visually complex ones?
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To address this question, we took a similar approach to the one we took in

Experiment 4: We adapted a well-established vision science paradigm that applies

to visual complexity and asked whether it applies to mechanistic complexity. In

Experiment 4, we did this with the visual search asymmetry from Sun and Firestone

(2021) (see Wolfe, 2001 for review on search asymmetries). Here, we do so with

visual working memory, using our stimuli in the paradigm that Alvarez and Cavanagh

(2004) employ to demonstrate how visual complexity affects visual working memory

(see Bays and Husain, 2008 for a similar paradigm to probe visual working memory,

and see Franconeri et al., 2013; Ma et al., 2014 for review). Specifically, Alvarez and

Cavanagh (2004) find that visual working memory can store only a limited amount

of visual “information” (here, visual complexity). In other words, more visually

complex objects are harder to store in visual working memory; might a similar effect

exist for mechanistic complexity?

Methods

Participants

300 new participants were recruited for this study. This is a large sample size

because we anticipated a subtle effect. In much the same way that our anticipated

visual search effects were more subtle than in Sun and Firestone (2021), so too we

our effect to be more subtle than what is found in Alvarez and Cavanagh (2004) due

to differing hypotheses.

Stimuli and procedure

Participants performed a memory task, as in Alvarez and Cavanagh (2004). On

each trial, an array of 5 objects flashed for 500ms at random positions in an invisible

3-by-3 grid. It was then masked for 900ms, before another array flashed for 500ms.
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These are the same timing parameters as in Alvarez and Cavanagh (2004). Partici-

pants had to say whether the first array of objects was the same as the second array

of objects, or whether one object changed (using their keyboard, by clicking ‘S’ for

same and ‘D’ for different). Thus, they had to quickly encode the array in their

visual working memory.

Using our results from Experiment 1, we gathered the 10 objects with the largest

positive difference between mechanistic and visual complexity (i.e., high mechanis-

tic complexity, low visual complexity) and the 10 objects with the largest negative

difference between the two kinds (i.e., low mechanistic complexity, high visual com-

plexity). Note that these groups varied primarily in mechanistic complexity and not

visual complexity (discussed in our Results below). Participants completed 200 tri-

als, equally split between the following 4 types: “mechanistic same” (the 5 objects

are chosen randomly from the high mechanistic, low visual complexity list; the ini-

tial and final arrays are the same), “visual same” (the 5 objects are chosen randomly

from the low mechanistic, high visual complexity list; the initial and final arrays

are the same), “mechanistic different” (the 5 objects are chosen randomly from the

high mechanistic, low visual complexity list; the initial and final arrays differ by one

randomly chosen object), and “visual different” (the 5 objects are chosen randomly

from the low mechanistic, high visual complexity list; the initial and final arrays

differ by one randomly chosen object). The order of the trials was randomized for

each participant.

As per our pre-registration, we excluded participants who scored below 50% ac-

curacy (chance), and we excluded trials with a response time below 200ms or above

5000ms. 12 of 300 subjects did not submit a complete dataset, and 7 more subjects

performed below-chance, and were thus excluded by the accuracy criteria (leaving 281
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subjects total). 1,976 of the remaining 56,200 trials were excluded by our response

time criteria.

Results

Participants were better at remembering arrays of mechanistically complex, vi-

sually simple objects (73.5% accuracy) than they were at remembering arrays of

mechanistically simple, visually complex objects (72.1% accuracy; t(280) = 3.71,

p < .001; 95% CI of differences = [0.67%, 2.17%]; d = 0.22). As in Experiment 4,

this effect was not merely driven by a small subset of participants. 167/281 (59%) of

subjects had higher mean accuracy on mechanistic arrays than on visual arrays, in

line with the direction of our effect. Furthermore, this effect cannot be explained by

subjects only encoding visual complexity and ignoring mechanistic complexity. The

mean visual complexity of the two groups of objects was not significantly different

(3.34 in the visually simple, mechanistically complex group vs. 3.93 in the visu-

ally complex, mechanistically simple group; t(17.9) = 1.08, p = 0.29 in two-sample

t-test); meanwhile, the mean mechanistic complexity of the two groups differed sig-

nificantly (6.05 in the visually simple, mechanistically complex group vs. 2.84 in

the visually complex, mechanistically simple group; t(16.0) = 6.26, p < .001 in two-

sample t-test). In other words, the stimuli vary primarily in mechanistic complexity

(and not visual complexity). Thus, mechanistic complexity is driving the effect.

Note that our effect goes in the opposite direction of the one observed for visual

complexity in Alvarez and Cavanagh (2004). They find that visually complex objects

are harder to store in visual working memory; we find that mechanistically complex

objects are easier to store in visual working memory. Perhaps this is because of

the importance of mechanism to our everyday lives (Rescher, 1998); it may be the

case that information about the mechanistic complexity of an object is more useful
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than information about its visual complexity, making the former easier to encode

and retrieve than the latter.

More broadly, our results from Experiments 4 and 5 show that borrowing classic

tasks from vision science can help reveal implicit cognitive signatures of mechanistic

complexity. Experiment 4 adapted a visual search asymmetry paradigm (from Sun

and Firestone, 2021), and Experiment 5 adapted a visual working memory paradigm

(from Alvarez and Cavanagh, 2004).

Discussion

Mechanistic complexity drives judgments, visual attention, and visual working

memory more than visual complexity. First, we show that type-free ratings of com-

plexity are better-correlated with mechanistic complexity than with visual complex-

ity (Experiment 2); we replicate this finding with a 2AFC task (Experiment 3).

Then, we use two different implicit tasks — a visual search task (Experiment 4) and

a visual working memory task (Experiment 5) — to show that mechanistic complex-

ity even drives visual behaviors (more than visual complexity). The results of the

two visual tasks are especially striking, as representing mechanistic complexity is not

required to complete a visual task. Additionally, one might think these cases are bi-

ased towards visual complexity given previous research that shows visual complexity

can drive these processes. Our representations of object complexity therefore rely

not only on the external appearances of objects but also on their inner workings —

and may even rely on the latter more than the former. This finding is consistent with

previous philosophical arguments about complexity (Rescher, 1998), developmental

research about mechanism (Leslie, 1994), and common intuitions about objects (as

in the car vs. bicycle example).
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From perceiving high-level objects to perceiving high-level object com-

plexities

Our proposal that representations of object complexity rely on internal or higher-

level properties connects to previous work about the perception of objects more

broadly. Foundational research shows that perception incorporates not only low-

level features (e.g., color, shape) but also higher-level properties such as causality,

animacy, objecthood, and sophisticated relations between parts and objects (Heider

and Simmel, 1944; Michotte, 1963; for review, see Scholl and Tremoulet, 2000; Hafri

and Firestone, 2021). This reasoning parallels ours. Perceiving causality, animacy,

and objecthood serves our immediate needs (and thus the visual system may not

encode only low-level features); similarly, perceiving mechanistic complexity may

serve our immediate needs (and thus the visual system does not represent only visual

complexity). This may be why mechanistic complexity drives performance even in

visual tasks.

Subsequent research on object representation has suggested that high-level prop-

erties may be as important as — if not more important than — low-level features.

For example, center of mass (i.e., a higher-level physical feature) predicts how people

localize an object (by pointing) more than other, lower-level properties (Boger and

Ullman, 2023). This preference has also been explored extensively in development;

six-month-old infants encode conceptual category representations of objects even in

the absence of perceptual features (Kibbe and Leslie, 2019; for review see Kibbe,

2015).

This line of research may be useful in understanding how object complexity is

represented in the mind. When we perceive the complexity of an object, perhaps we

extract the complexity of not only its low-level visual features (i.e., as presented by
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contours, number of sides, and other proxies for visual complexity) but also its high-

level features (i.e., as presented by its internal mechanism or number of functions).

In this way, studying representations of complexity provides insight into how we

represent objects more broadly.

Does object complexity have a default kind?

At first, the notion of a “default” or “fundamental” kind of object complexity

may seem odd. After all, we do not seem to have a “default” form of other cognitive

judgments, such as beauty. However, within a specific domain, certain kinds of

information seem to influence both explicit and implicit judgments. For example,

symmetry seems to drive not only explicit attractiveness ratings (Rhodes et al., 1998)

but also attention, and in ways that arise early in development (Bornstein et al.,

1981; Rhodes et al., 1998). However, other kinds of facial beauty exist separate

from symmetry. The “averageness” of a face may also be predictive of beauty and

drive such implicit processes (Langlois and Roggman, 1990; Valentine et al., 2004).

In the realm of faces (and perhaps visual patterns more broadly; see Corballis and

Beale, 1976), one may compare symmetry and averageness as two different “kinds”

of beauty, and ask which one wins out over the other in various tasks.

We propose an analogous understanding of object complexity. Within the do-

main of objects, we compare visual and mechanistic complexity as two “kinds” of

complexity, and ask which one wins out. We find that mechanistic complexity drives

both explicit judgments and implicit visual processes. Both visual and mechanis-

tic complexity are still important for representing object complexity though, just as

both symmetry and averageness are important for representing facial beauty. Future

work may examine how other kinds of object complexity participate in our repre-

sentations of object complexity. For example, functional complexity (the complexity
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of the functions an object can do; Ahl and Keil, 2017) may also be very useful to

our everyday lives. Might it show similar signatures to mechanistic complexity? Or

might it prove to be a separate piece of the puzzle of object complexity?

Concluding remarks

Representing mechanistic complexity serves many purposes in our everyday lives.

It is perhaps unsurprising, then, that judgments of object complexity are more

aligned with mechanistic complexity than with visual complexity. We show that

mechanistic complexity not only predicts direct judgments, but also drives implicit

visual behaviors. Consequently, representations of complexity may rely on mecha-

nistic information more than visual information.
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Constraints on generality

Subjects in our experiments were recruited via Prolific (for a discussion of this

subject pool, see Peer et al., 2017). The studies were open only to US adults. We

do not take it for granted that our findings generalize beyond this group. However,

given the simple nature of our questions in Experiments 1-3 and the implicit nature

of our response metrics in Experiments 4 and 5, we feel it is possible our results will

extend to other populations.
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