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Abstract

A central puzzle the visual system tries to solve is: “what is where?” While a great
deal of research attempts to model object recognition (“what”), a comparatively
smaller body of work seeks to model object location (“where”), especially in per-
ceiving everyday objects. How do people locate an object, right now, in front of
them? In three experiments collecting over 35,000 judgements on stimuli spanning
different levels of realism (line drawings, real images, and crude forms), participants
clicked “where” an object is, as if pointing to it. We modeled their responses with
eight different methods, including both human response-based models (judgements
of physical reasoning, spatial memory, free-response “click anywhere” judgements,
and judgements of where people would grab the object), and image-based models
(uniform distributions over the image, convex hull, saliency map, and medial axis).
Physical reasoning was the best predictor of “where,” performing significantly better
than even spatial memory and free-response judgements. Our results offer insight
into the perception of object locations while also raising interesting questions about
the relationship between physical reasoning and visual perception.
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Introduction1

When asked “where is the hammer,” with a hammer right in front of you, where2

would you point? Initially, this question seems trivial; the hammer is “over there.”3

Yet, one can give many reasonable answers, each highlighting different properties.4

Perhaps you would point to the center of the hammer (as it appears to you); or to5

its handle (the part where you would hold it); or to its metal head (the part that6

performs the action); or to other locations still. The question “where?” points to a7

subtle problem in our classic definitions of vision.8

Early definitions of vision distilled the complex process of seeing into a simple9

question: “what is where?” (Marr, 1982). Such definitions served as touchstones for10

exploring vision in philosophy, cognitive science, and neuroscience, where researchers11

discovered an apparent split in the visual system between the ventral stream— which12

models “what” — and the dorsal stream — which models “where” (Schneider, 1969;13

though more recent work has significantly complicated this initially neat split, as14

discussed later).15

Plenty of research in visual cognition has focused on modeling “what,” and there16

is an expansive literature about the mechanisms underlying object recognition. While17

there is also an expansive literature on “where,” by relative comparison it has been18

less explored than “what,” especially in the perception of everyday objects. Here,19

we take a step towards exploring the nature of object location by asking: what is20

“where”?21

Much of the existing work on modeling “where” analyzes processes different from22

simply perceiving objects as they appear in front of us. For example, various work23

explores the nature of object location via spatial memory (Langlois et al., 2021),24

ambiguous shapes (Huttenlocher et al., 1991), object parts and scenes (Bar and25

Ullman, 1996), or eye movements (Vishwanath and Kowler, 2003). These all inform26

our understanding of object localization in the mind and use methods similar to ours,27

though in a different context. For example, these works only give hints to where we28

may point at a hammer if it appeared right in front of us – but do not give a well-29

defined answer. We expand on these works by testing the nature of perceived object30

location in simple tasks with everyday objects at differing levels, revealing aspects31

of object location in our daily lives.32

Here, we present three experiments collecting data from over 35,000 judgements33

in which participants indicate “where” an object is. The experiments use objects34

covering a wide range of information and realism (such that they generalize to a35

range of stimuli). We modeled “where” using methods based on previous work,36

including both human response-based models and image-based models. Across all37
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levels of realism, a model that relies on physical reasoning (perceived center-of-mass)138

best predicted “where” an object is. Our results provide novel insights into how we39

model object locations in perception, and point to a surprising relationship between40

physical reasoning and visual perception.41

Results42

Our three experiments span a range of object realism. In Experiment 1, we used43

line drawings with no depth and color. In Experiment 2, we used images of real44

objects with depth and color (but no background). Finally, in Experiment 3, we45

masked and rotated the line drawings, such that they became unidentifiable crude46

forms.47

On each trial, participants clicked “where” each object is, as if pointing it out to48

another person (Figure 1). Each stimulus set consisted of 50 objects, which included49

a range of everyday entities, both symmetric and asymmetric items, tools, agents,50

and more.51

We modeled participant responses for “where” using eight different models. The52

first three models were based on human responses from other tasks, collected sepa-53

rately: (1) center of mass (“click on the object’s center of mass”), (2) spatial memory54

(“click where the object was” after the object disappeared), and (3) free-response55

clicks as an attention proxy (“click anywhere on the object”). Participants in each56

task and experiment were unique and independent. We also considered four image-57

based models: (4) a uniform distribution across the object, (5) a uniform distribu-58

tion across the object’s convex hull, (6) the object’s saliency map (as generated by59

OpenCV fine-grained saliency maps), and (7) medial axis (as generated by scikit-60

image). The models provide a balance between new proposals specific to this work,61

and existing models that have been shown to perform well in similar tasks (e.g.,62

medial axis from Firestone and Scholl, 2014). After we tested these broad models63

of “where,” we pre-registered and analyzed a final, more specific model: (8) human64

responses on where they would grasp the object to pick it up.65

With regards to the center-of-mass model, we emphasize that the true center of66

mass cannot be accurately recovered, and is also irrelevant even if it could be, as67

people have no direct access to it. The primary aspect that matters for our analysis68

1Note that, while other relevant dimensions for physical reasoning in humans exist beyond center
of mass, we use center of mass as a proxy for physical reasoning. Computing center of mass requires
some kind of physical reasoning, which previous work has shown to be quite sensitive, or at least
inaccurate in consistent ways which still imply a physical computation (Cholewiak et al., 2013,
2015; Firestone and Keil, 2016), making such a proxy reasonable and well-defined.
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Figure 1: Example participant data from Experiment 1 (line drawings). Each blue dot shows a
participant’s click in response to the query “where is the [object]?” Plots of “where” data for all
our stimuli are accessible on our OSF repository (osf.io/nhj7k). Readers may also try each task for
themselves at: tb.perceptionresearch.org/what is where.

based on this model is people’s subjective judgement of the center of mass, and how69

that relates to the perception of “where.”70

To test the performance of our models, we first fit a Gaussian mixture model71

(GMM) to the “where” data provided by participants for each object, such that72

we could compare distributions of participant responses (Figure 2). The number of73

mixtures was chosen via three-fold cross-validation (for between 1 and 5 mixtures).74

We then calculated the mean negative log-likelihood of our models under this GMM75

for “where” on each object. Finally, we compared the models using paired Wilcoxon76

signed-rank tests on the mean negative log-likelihood scores to ask which model best77

predicted the “where” responses. All analysis plans, choice of models, and experi-78

mental designs were pre-registered; materials and data are available at osf.io/nhj7k.79

In all three experiments, “where” responses were best predicted by center-of-80

mass judgements, followed by spatial memory judgements and free-response clicks,81
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“Where” (people) Gaussian mixture

Model Mi Score Mi given mixture

Figure 2: Schematic illustration of our modeling paradigm, using a line drawing of headphones
as an example. First, we collect participant judgements for “where” an object is. After fitting a
Gaussian mixture to this data, we score a proposed model Mi under this Gaussian mixture, using
its negative log-likelihood.

respectively (Figure 3). The differences between these models was significant: phys-82

ical reasoning was a significantly better predictor of “where” than spatial memory83

across experiments (Experiment 1: p < 0.01; Experiment 2: p < 0.001; Experiment84

3: p < 0.001). Spatial memory in turn significantly outperformed the free-response85

model, though the difference was slightly smaller (Experiment 1: p = 0.01; Experi-86

ment 2: p = 0.04; Experiment 3: p < 0.01). The various image-based models, while87

based on previous work and reasonable assumptions, performed poorly by compari-88

son.89

Furthermore, our eighth model (where people would grab the object), which we90

pre-registered and explored after testing our initial seven, performed significantly91

worse than our initial three human response-based models. In all three experiments,92

the grasping model performed the worse than the center of mass, spatial memory,93

and “click anywhere” models (p < 0.001 when compared to the center-of-mass model94

in each experiment).95

We estimate ceiling performance as the log likelihood of people’s “where” judge-96

ments under its own GMM – another model should not predict the “where” data97

better than the “where” data itself. In Experiments 1 and 2, the “where” data was98

significantly more likely under the GMM than the center of mass data (Experiment99
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1: p < 0.01; Experiment 2: p < 0.01). However, in Experiment 3, we observe100

near-ceiling performance for the physical reasoning model, as its likelihood is not101

distinguishable from the likelihood of the “where” data itself (p = 0.43).102

Though participants tend to click near the center of objects — perhaps leading103

to a bias towards the center-of-mass model — this does not explain away our results.104

First, this bias of clicking near the center of the objects would apply to all human-105

response models, not just the center-of-mass model. Further, had this been the case,106

then simply predicting responses for “where” by distance from the image centroid107

would be the best model. However, this was not the case, suggesting that this108

preference for center of mass goes beyond mere clicking biases.109

Discussion110

What is “where”? Our three experiments explore how we judge the location111

of objects and find that, across a range of object realism, a judgement rooted in112

physical reasoning (center of mass) is the strongest predictor of perceived object113

location. We suggest that judgements of object location rely on physical properties.114

This idea echoes other work in visual perception, neuroscience, and developmental115

psychology.116

Experiment 1: line drawings Experiment 2: real objects Experiment 3: masked objects
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Figure 3: Mean negative log-likelihood of our initial seven models in each experiment. In all three
experiments, the center-of-mass model performed significantly better than the other models. Under
each experiment’s results is a depiction of a banana in that experiment’s form of stimuli, overlaid
with “where” data. All analyses and stimuli are available at (osf.io/nhj7k).
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Recently, many researchers hypothesized that a mental “simulation engine” un-117

derlies much of our intuitive physical reasoning (Battaglia et al., 2013; Fischer et al.,118

2016). The first step in these mental simulation models assumes we de-render a visual119

image into a physical scene representation, but this process is not yet formally solved.120

With a few exceptions (e.g., Little and Firestone, 2021; Boger and Firestone, 2022),121

the question of how physical reasoning fits into vision remains relatively unexplored.122

Our results speak to a different direction in this process; we suggest that physical123

reasoning and vision rely on each other, rather than one process exclusively relying124

on the other. This relationship is strong enough that physical reasoning predicts125

perceived object locations better than seemingly closer processes such as spatial126

memory and attention. The instructions for the spatial memory judgements (“where127

was the object”), free-response judgements (“click anywhere on the object”), and128

“where” judgements (“where is the object”) are all semantically similar, compared129

to the physical reasoning judgements (“click on the object’s center of mass”). This130

makes our empirical findings all the more striking.131

Beyond intuitive physical reasoning, our work adds a new angle to existing liter-132

ature on multiple object tracking (MOT) and object-based attention. For example,133

foundational work in MOT suggests that attention is deployed to objects rather than134

features, implying that there is a sort of physical “objectness” crucial to vision (Scholl135

et al., 2001). This tracking ability persists dynamically through some physical events136

such as occlusion, but not others (such as deletion) (Scholl and Pylyshyn, 1999). Such137

object-based attention even exists over object representations implicitly created by138

perceptual completion (Moore et al., 1998). However, much of these results exist139

over either dynamic objects (i.e., in the case of MOT) or abstract objects. Here, we140

show the impact of physical “objectness” on the judgements of object location in a141

simple, static paradigm involving everyday objects.142

Our results also have analogs in neuroscience, further aligning with our proposed143

relationship between physical reasoning and vision. For example, the MT complex144

— thought to be responsible for motion perception — has been shown to mediate145

attentive tracking (Culham et al., 1998). A large body of work has taken this classic146

split between the “what” and “where” streams to include “how,” which modulates147

how we interact with objects, noting that people can direct accurate motor move-148

ments at objects they fail to localize (Goodale et al., 1991; Goodale and Milner, 1992;149

Kravitz et al., 2011). This matches our results that the “where” of objects may be150

constrained by their physical behaviors.151

At an even more basic level of representation, foundational work in infant cogni-152

tion shows that physical reasoning may supersede representations of object identity.153

Even when infants forgot the features of a set of objects, they still expected them154
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to remain physically consistent. For example, infants who fail to notice changes in155

object shape are surprised to see the object disappear entirely (Kibbe and Leslie,156

2011; Zosh and Feigenson, 2012). This provides an even richer demonstration of157

earlier work showing that infants’ representations of objects conform to more foun-158

dational physical properties such as continuity and rigidity (Baillargeon et al., 1985;159

Spelke and Van de Walle, 1993; Spelke et al., 1992). We suggest that such repre-160

sentations persist across development (as in Kibbe, 2015) in even simpler ways than161

object tracking or planning, and rather influence our judgements of object locations162

in simple, static settings.163

Though our experiments covered a range of realism, they were still limited to164

static objects with no background. Physical reasoning in the real world deals with165

complex scenes and moving objects. Future work may explore how dynamics, re-166

lations, and interactions affect judgements of “where.” In everyday life, we do not167

recognize and locate a hammer as an isolated object, but as a hammer next to a168

cup, behind a book, on a tiger, and so on (Hafri and Firestone, 2021). These re-169

lations require extracting rich physical and visual information that may affect our170

perception of object location. For example, participating in a causal event such as a171

collision creates a reliable illusion in the spatial relations of two objects (Scholl and172

Nakayama, 2004). Future work may explore how “where” changes if, rather than173

seeing a hammer with no background, we see a hammer supported by a table from174

below, or supported by a string from above.175

Beyond the insights our results provide about physical reasoning and object lo-176

cation, they raise intriguing questions about how “where” relates to “what.” For177

example, when judging the location of a pineapple, people consistently clicked on its178

body, as if ignoring the stem on top. What does this mean about the nature of how179

we perceive the pineapple? Judgements of “where” may reveal a unique way to an-180

alyze the perceived essence of an object (Gelman et al., 2003). Because participants181

must choose only a single point on the object, they may ask themselves which part of182

the object most represents its essence. Perhaps, in line with work in infant cognition183

and MOT, we represent the essence of objects not only by their visual features, but184

also by their physical properties, in some cases even relying more on the latter than185

the former.186

While our experiments ask each participant for a single judgement, our percep-187

tion of “where” likely depends on more than just a single point. This representation188

may instead resemble a “point cloud.” However, we can treat each single-point esti-189

mate as a sample drawn from such a cloud distribution, in line with other proposals190

on sampling-based cognition (Vul et al., 2014). By aggregating judgements across191

participants, we generate well-powered cumulative distributions of object location,192
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in much the same way that cumulative distributions reveal mathematically defined193

shape skeletons (Firestone and Scholl, 2014). In this sense, our distributions recap-194

ture the potential point-cloud distributions, which turn out to be neither uniform,195

nor skeletal.2196

By modeling “where” in a simple and direct setting, we take a step towards197

understanding how we represent object location. Our results reveal a surprising198

bidirectional relationship between physical reasoning and visual perception. More199

broadly, we believe this work suggests a novel avenue for future work on modeling200

“where” in vision. While it does not fully resolve the question of what is “where,”201

it suggests where to look.202

Frequently asked questions203

We thought it would be useful to directly address a few common questions and204

comments we have received regarding this work. We hope this helps lead to open205

conversation with readers, and serves as a “theoretical supplement.”206

Surely people represent locations as more than a single dot, something more like an207

area-cloud?208

We agree participant representations of “where” may involve multiple locations209

on the object, rather than the single location we ask each participant to produce.210

But, we believe these single point estimates form well-powered point clouds, which211

together reflect the “where” distribution.212

In many ways, giving participants the option to click on the object is the best213

solution to such a problem. First, such issues exist in other single-choice clicking tasks214

(e.g., Firestone and Scholl, 2014) which also find mathematically strong distributions.215

Second, clicking tasks give participants maximum flexibility to represent this single216

location as best they can, whereas, for example, a forced-choice task adds ambiguity217

to this point-cloud across participants.218

2An additional way to address this point cloud hypothesis would be with a series of object lo-
calization tasks that do not rely on clicking, such as a vernier acuity task (for review, see McKee
and Westhe, 1978). Relying on two-alternative forced-choice responses for object positions elimi-
nates aspects of the fine-grained modeling approach we present here. However, it also presents a
higher-level, coarser interpretation of object location; future research may seek to use these types
of paradigms to further our understanding of object localization. In this work, we stick to clicking-
based tasks given their simplicity and prevalence in related work, such as in Firestone and Scholl,
2014.
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Wouldn’t any dot on the image be a valid answer? If I point to any part of an image219

and ask “is this the [object]” the answer should be “yes.”220

In principle, valid “where” responses would be any location on the surface or edges221

of the object (though in our experiments people also point to empty areas, such as222

the middle of a bicycle). In practice, this is not what people do when generating223

responses. Under the hypothesis that any image part is a valid answer, people would224

conflate “where” with “any non-background pixel,” and responses should then either225

form a uniform distribution across the object (a uniform point cloud), or the single-226

best error-minimizing point sample from that cloud (the image center). We don’t227

observe either of these. Rather, we see that center of mass is highly predictive of228

“where” responses.229

Is this about vision? Isn’t this actually about social things, such as communication?230

We do not know for sure that our results contain no social component, and it231

would be interesting if they did. However, we cannot think of a theoretical account at232

the moment for how social features explain our results, and dictate people’s responses233

in a way that a hypothetical “social-free” version would not. Put as a question, why234

would “point an object out to someone” cause participants to produce clicks that235

match judgements about center of mass (a non-social judgement), but simply locating236

an object for yourself result in different judgements?237

Also, such social or communication components exist (via task demands) in other238

studies that are taken to be about vision, and cannot be fully removed. For example,239

(Firestone and Scholl, 2014) — who ran similar tasks to explore shape skeletons in240

the visual system — ask participants to tap anywhere on a shape. Though there is no241

language about “pointing it out to someone,” the experiments do require participants242

to tap the shape on an iPad held by an experimenter, requiring some form of pointing243

it out to, and communicating with the experimenter.244

More broadly, the question about whether this is actually about vision in turn245

raises the question of what vision is, and a classic answer has been “vision is about246

what is where,” bringing us full circle.247

Have you considered [this other model] instead?248

In this work, we analyzed eight different models, which is straining a short paper.249

We chose these models to form an encompassing package, while trying to not be250

overbearing, and not claiming to be exhaustive. In the process, it’s quite possible we251

left out other reasonable models.252

We’re happy to explore new models, or additions to the current models. We also253

encourage proposals for why our existing models work or don’t work. We believe254
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part of the appeal of this work is in spurring new directions. However, we have two255

suggestions for any new models or proposals.256

First, new models or proposals should match the data already at hand, at a basic257

level. For example, several proposals beyond our set turn out to be equivalent to258

a uniform distribution or center-of-image model, which does not match the existing259

data. We considered this above, in the interpretation that “where” ambiguously260

leads to “any non-background pixel,” and we’ve also come across proposals that261

people might “minimize the error of a mis-click,” which turn out to be similar.262

Second, new models or proposals should be able to generalize in a way that can263

capture both our broad stimulus set, and visual representations more generally. This264

is perhaps a main pitfall of our eighth model, that asks participants where they would265

grab the object. Many objects in our stimulus set (and the world) are not graspable,266

especially the crude forms we use in Experiment 3.267

We invite interested readers to test new models and proposals; all our data and268

experimental code are available on our OSF repository (osf.io/nhj7k).269

How do we know participants are calculating the center of mass accurately? Why not270

calculate the true center of mass, instead of relying on people’s judgements?271

We would stress that a “true” center of mass cannot be calculated from our272

images, given that the weight of each object part is unknown. So, there is no way273

to know such calculations are capturing a ground truth. (Though previous work has274

shown that people accurately judge an object’s center of mass (Cholewiak et al.,275

2015).) More importantly, even if we could calculate the true center of mass, it276

would be irrelevant for judgements of “where.” People do not have access to the277

ground-truth center of mass beyond the mental calculations they perform in the task278

asking them to estimate the center of mass, which is what we asked them to do.279

How do we know participants are not merely clicking on the center of the object for280

“where,” and that’s why center of mass is the best model?281

As with the above question of additional models, we believe that this concern282

would need to be first validated by the data. Before performing any analysis, we can283

see that people are not merely clicking on the object’s center, and rather that the284

clicks possess a unique distribution which seems to have some structure.285

However, this concern can also be tested empirically; if the main reason the center-286

of-mass model predicts the “where” data well is because of a bias to click towards287

the center, then a model predicting “where” clicks using the image centroid should288

perform the strongest. However, this is not the case, as it performs significantly289

worse than all human response-based model.290

11

https://osf.io/nhj7k/


Finally, if such a center bias existed in the “where” clicks, it would likely extend291

to other models. It is especially hard to explain why such a bias would not extend292

to the “click anywhere” model (and why that model is not the strongest) under this293

explanation; the instructions for the “click anywhere” and “where” tasks are almost294

identical, such that a center bias in one should extend to the other if it existed.295

However, this is not what we observe, so we believe this concern is unsubstantiated296

by our data.297

Materials and methods298

Participants299

Each of the three experiments recruited 50 unique participants for each of the300

tasks and each of the three forms of stimuli (“click where the object is,” “click on301

the object’s center of mass,” “click where the object was,” “click anywhere on the302

object,” and “click where you would grab the object to pick it up”; total N=750).303

All participants were recruited from the online platform Prolific (for a discussion of304

the reliability of this subject pool, see Peer et al., 2017). Unique participants were305

used for each condition and experiment such that no participant appeared in more306

than one model or in both the dependent and independent variables. Participants307

were excluded if they did not contribute a complete dataset or if they clicked the308

same location in five consecutive trials.309

Stimuli310

Line drawings for Experiment 1 were taken from The Noun Project. Object311

images for Experiment 2 were taken from a variety of online sources. The kinds of312

objects in Experiment 2 were the same as those in Experiment 1 (i.e., if Experiment313

1 included a line drawing of a gorilla, Experiment 2 included a real image of a314

gorilla). The masked objects for Experiment 3 were created by applying a random315

mask to the line drawings, then vertically flipping them to remove any identifying316

information. The images were randomly padded both vertically and horizontally such317

that responding in the center of the screen each time would not produce reasonable318

data. All images were 500x500 pixels large in the participant’s web browser.319

Note that unique participants are assigned to each condition, where they then320

see all the stimuli in the given form and answer the given question. In other words, a321

participant in the Experiment 1 “center of mass” conditions will see 50 line drawings322

and click on their center of mass; they will not see any images of other types or be323

told to click according to different instructions. The same set of 50 images are used324

across all conditions in a given experiment.325
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Design and procedure326

Participants saw 50 images in each experiment. The order of the images was327

randomized. When gathering judgements for “where,” we instructed participants328

as follows: “Your friend asks: ‘where is the [object]?’. Click on where you would329

point to.” In the “center of mass” condition, participants were told to “Click on the330

center of mass of the [object].” Participants in this condition were provided with331

an additional instruction of what center of mass means (“average position of all the332

mass in the object”). Though we cannot calculate the “accuracy” of these responses333

(given that we cannot calculate a true center of mass from images), the responses334

appear consistent and reasonable (and previous work shows such judgements are335

fairly consistent; Cholewiak et al., 2015). In the spatial memory condition, the336

object appeared for 1000ms, during which time the participant’s mouse was hidden337

and immovable. The object then disappeared and participants were instructed as338

follows: “Your friend asks: ‘where was the [object]?’. Click on where you would point339

to.” In the “click anywhere” condition, participants were told to “Click anywhere340

you want on the [object].” Finally, the “grasp” condition instructed participants to341

“Click where you would grab the [object] to pick it up.”342

Data availability343

All data, code, materials, and pre-registrations are available at osf.io/nhj7k.344

Readers can also do the tasks for themselves at tb.perceptionresearch.org/what is where.345
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