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Among the most significant modes of human creative expression s style:
the capacity to represent objects, events and scenes (for example, lilies
dotting a pond) in some distinctive manner (for example, Monet’s broken

brushstrokes and blended colours). Diverse research traditions analyse the
social, political and aesthetic significance of stylistic representation. But
what are the cognitive and computational foundations of this capacity?
Here we characterize style perception as a process that ‘parses’ form from
content, and adapt classic psychophysical paradigms to discover multiple
new phenomena of style perception. Using both naturalistic images and
synthetic stimuli, ten experiments reveal perceptual ‘tuning’ to stylistic
information, representational constancy over stylistic variation, and
mental rendering of novel styled objects. Moreover, an object recognition
model further grounds style perception by capturing human judgements
ofimage similarity over different styles. Together, this work illuminates the
psychological foundations of stylistic perception and opens the door to
further investigation of styled media.

When looking at a painting, such as Van Gogh'’s Starry Night (Fig. 1a),
what dowe see? Certainly we see the painting’s subject—a French village
beneath anight sky, viewed fromthe window of anelevated monastery.
Equally salient, though, is the painting’s style—its dark palette of blues
and yellows, dreamlike aura and whirl of spiralling textures. In other
words, the scene is portrayed in a certain manner, which is as much a
part of the painting as the scene itself.

Adistinctive aspect of styleisthatit canvaryindependently of con-
tent.Forexample, the same village scene mightlook entirely different if
painted by arealist aiming to preserve naturalistic details, and different
stillif painted by an abstract expressionist wishing to convey emotion
orinner experience. This distinction also arises outside of art galleries
and museums, as when we appreciate a piece of clothing or furniture,
an unusual set of cutlery or a row of homes in a neighbourhood. For
example, aforkinacutlery setislikely to have tines and a handle—but
itsshape, finishand ornamentation may be subject to stylistic variation.
Similarly, a house generally requires a door, roof, windows and space
forinhabitants—but the size, layout and appearance of these elements
may differin aVictorian home as compared with a cottage or ranch.

The ubiquity and salience of style have generated longstanding
scholarly interestinavariety of research traditions, including sociology"?,
history®and, of course, art theory**. But how does the mind separate style
from content in the first place? Surprisingly, little is known about the

psychological basis of visual style perception. Of course, there is arich
psychological literature on visual aesthetics® %, which has explored the
patterns humans prefer® ", to what extent aesthetic preferences reflect
stable traits of individuals™ and which patterns of neural activity are
associated with aesthetic experiences” . However, a psychologically
grounded account of visual style itself has been elusive (cf. refs. 18-21).
Thus, fundamental questions remain unanswered (and even unasked):
What is the nature of stylistic perception, what psychological mecha-
nisms does it draw upon and what are its psychophysical signatures?

Here, we address these questions by drawing on methods and
insights from both classic psychophysical studies and recent advances
ingenerative artificial intelligence. Along tradition inexperimental psy-
chology explores how human perception ‘parses’ the content of a stimu-
lus fromits context or conditions of presentation—as when we achieve
colour constancy over different illumination conditions®**, adapt to
accented speech™ or extract letter identities fromdifferent typefaces™.
More recently, modern machine-learning technologies have enabled
the synthesis of stylized images, whereby amodel canextract aspects of
artistic style fromoneimage (for example, Starry Night) and then flexibly
apply themtoany otherimage (for example, ordinary natural scenes)—a
technique known asstyle transfer’*” (Fig. 1b). For example, this process
cancreate novelimages of mountains, beaches,bedrooms andlibraries
inthe style of Starry Night, orindeed any other painting (Fig. 1c).
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Fig.1| Extracting and applying artistic style. a, Starry Night by Vincent Van Gogh.
Readers are invited to notice not only the content of the image (a French village

beneath anight sky), but also its style, including its palette, swirling textures
and dreamlike aura. b, A schematic depiction of ‘style transfer?*?, a process
that analyses a ‘styleimage’ s to infer an embedding vector S, whichis then
transferred to a‘contentimage’ c. This resultsin animage, x, which depicts the
content image in the given style. In generating this image, the network is trained
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to minimize loss in both style (that is, the style difference between x and s) and
content (thatis, the content difference between x and ¢), here defined by VGG
embedding vector distances. ¢, Many of our experiments exploit this process to
study the perception of style, by generating natural scenes (mountains, libraries,
bedrooms and beaches; 29) in the styles of famous paintings (for example,

Van Gogh'’s Starry Night, Monet’s Water Lilies, Klimt’'s The Kiss) and placing them
in adaptations of classic psychophysical paradigms.

The present work combines these approaches to investigate the
cognitive mechanisms underlying style perception. We conceive of
style perception as akin to the well-characterized parsing processes
mentioned above (for asimilar approach outside the context of artistic
style, seeref.28) and thenexplore those processes using newly available
style-transfer techniques (as well as naturally occurring styled images,
suchasstyled sets of cutlery). Framing style perception as aninstance
of the mind parsing content from form opens the door to adapting
established psychophysical paradigms to the study of artistic style,
and using style-transfer techniques allows the generation of a large
image set that varies mostly or only in style (while preserving underly-
ing content, composition and so on) in ways that would be difficult or
impossible to achieve with purely naturalisticimages.

Here, in ten preregistered experiments, this approach reveals
multiple new phenomena of style perception (Fig. 2). These results
both (1) constitute new discoveries in their own right and (2) testify
to the promise of ‘parsing’ as a working model for the study of style
perception. Finally, we show that acomputer-vision model trained on
objectrecognition (ResNet-18, ref. 29) predicts subjective impressions
of similarity across styles. Together, this theoretical framework and set
of empirical results help to illuminate the cognitive and computational
basis of style perception.

Results

Experiments 1-4, style tuning

Our first set of experiments was inspired by font tuning, whereby
observers adapt to typefaces in ways that aid reading fluency and

letter recognition®. In a typical font tuning paradigm, participants
see a passage of text in either a single typeface or multiple type-
faces and are tasked with making judgements about the presented
text (for example, counting how many tokens are non-words as
opposed to words). The key finding is that text appearing in a single
typeface is more easily read than text appearing in multiple type-
faces, evenif each typeface is familiar and otherwise readable on
its own—suggesting a tuning process whereby perception extracts
(and then adaptsto) the fontin which the textis rendered. However,
letters and typefaces constitute a fairly circumscribed case, due to
relatively limited dimensions of typeface variation and a constrained
setof underlying contents (that s, the letters of the alphabet). Might
asimilar phenomenon arise in the more complex and open-ended
context of artistic style?

Experiment 1 adapted the font-tuning paradigm to visual style
(Fig.3).Using the style-transfer model described by Ghiasietal. (ref.27,
whichadaptsamodel proposedinref.26), we generated a stimulus set
consisting of natural images of scenes (for example, mountains and
libraries®’) rendered in the style of famous paintings (for example, Van
Gogh’s Starry Night, Monet’s Water Lilies and so on). We then designed
a ‘style tuning’ task using these images. On each trial, participants
viewed a row of images (analogous to a sentence in font tuning) and
simply had to count how many images depicted mountains (or one
of the other scene types, randomly assigned to each participant).
Crucially, in half of trials, the images appeared in asingle style; in the
other half of trials, the images appeared in multiple styles (interested
readers may view all tasks, along with a repository containing all
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Fig.2| Adapting psychophysical paradigms to study artistic style. Top: in font
tuning, readers become more fluent and accurate after adjusting to the typeface
of text; the present experiments adapt this paradigm to introduce style tuning,
whereby target detection improves over time when artistic style is held constant.
Middle: a core visual process is discounting the illuminant, enabling perceivers
to see the same surface colours across different illumination conditions. Here,
we explore an analogous process—style discounting—enabling perceivers to see
the same scene content across different artistic styles. A change-detection task
tests whether scene changes are more easily detected than style changes, even
when the two change types are equated for image similarity. Bottom: in semantic
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priming, salient properties of items one has encountered can create false
memories in which one internally generates representations of items one has not
encountered (for example, misremembering ‘sweet’ after encountering ‘candy’,
‘taste’and ‘treat’). The present work reveals a similar pattern in style perception:
After seeing aspoon and fork from a cutlery set with agiven style, the mind

may generate a representation of the knife from that set, despite never having
encountered it before. Such style extrapolation implies that the mind integrates
the style of items one has seen with other background knowledge to infer the
likely appearance of unseen objects.

preregistrations, data and analyses, at https://perceptionresearch.
org/style). We predicted that, just as same-typeface sentences are
easier toread than mixed-typeface sentences (resulting in faster read-
ing times), same-style image arrays would be more easily processed
than mixed-styleimage arrays (resulting in faster scene-identification
times)—reflecting the visual system’s ability to learn a mapping
between styles and scene identities.

Indeed, participants were significantly faster to enumerate scenes
in same-style trials (mean (M) = 5,418 ms) than in mixed-style trials
(M=5,707 ms, difference 289 ms; t(43) =4.93, P<0.001, d = 0.74, 95%
confidenceinterval (CI) 171-407 ms; thisand all other ¢-tests reported
here are two-tailed dependent-samples tests over participant-level
means). This speed advantage did not come at the expense of accu-
racy, which was also higher on same-style trials (M =72.03%) than on

Nature Human Behaviour | Volume 9 | December 2025 | 2497-2509

2499


http://www.nature.com/nathumbehav
https://perceptionresearch.org/style
https://perceptionresearch.org/style

Article

https://doi.org/10.1038/s41562-025-02249-8

Experiment 1

Same style versus mixed style

100%

75%

Accuracy
Experiment 2
Varied # of images
4,500 —
*kk

% 4250

£

Q

£

= 4

o 4,000

[2]

C

I}

a

3

& 3,750 -

3,500 - SR
Speed

Experiment 4

Accumulation over time

6,500 ~

Response time (ms)

Fig. 3| Style tuning. Experiments 1-4 adapted font tuning paradigms by asking
participants to enumerate a target scene type (for example, mountains) within
anarray of styled images. Half of the time, all of the images appeared in the same
style (for example, as seenin the green outlines above); the other half of the time,
theimages appeared in amix of styles (for example, as seen in the blue outlines
above). Participants were significantly faster and more accurate on same-style
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mixed-style but also on the style and participant level (experiment1, N=44). This
effect arose for arrays of as few as three images (experiment 2, N = 46), survived

controls for low-level image properties (experiment 3, N = 44) and accumulated
over time (experiment 4, N=42). Data are presented as means + 95% Cls of the

difference between conditions. All statistical tests are paired, two-sided ¢-tests;
**P < 0.001.RT, response time.

Nature Human Behaviour | Volume 9 | December 2025 | 2497-2509

2500


http://www.nature.com/nathumbehav

Article

https://doi.org/10.1038/s41562-025-02249-8

mixed-style trials (M = 65.29%, difference 6.74%; t(43) = 6.10,P < 0.001,
d=0.92,95% Cl14.51-8.97%; preregistered as a secondary analysis for
this experiment). Thus, just as perception adapts to the typeface of
text oreventheaccent of aspeaker, it alsoadaptsto animage’s style—a
novel phenomenon we refer to as style tuning.

Experiment 2 varied the number ofimagesinthearrays(3,5,7or9)
to ask how quickly the mind adapts to style. Might these effects arise
with very few examples? Indeed, we found that style tuning occurred
bothacrossthe full sample (thatis, at the same-style versus mixed-style
level; mean difference 123 ms; t(43) =3.53, P<0.001, d = 0.52, 95%
C153-193 ms) and at each subsample (three-image arrays: 98 ms;
five-image arrays: 108 ms; seven-image arrays: 197 ms; nine-image
arrays: 89 ms). Thus, style tuning occurs with as few as three examples.
Therapid nature of style tuning continues to mirror font tuning, which
arises not just for words in alonger paragraph but even for individual
lettersin ashortstring®.

Experiment 3 asked whether low-level image differences may be
drivingstyle tuning effects. Notice, for example, that Van-Gogh-styled
scenes tend to be blue and yellow, while Munch-style scenes tend to be
reddish, and that the images vary along other dimensions as well (for
example, luminance); perhaps, then, our results are driven by the dif-
ficulty of jumping from ablue scene toared one, or fromadark scene
to abright one. To control for such factors, we repeated experiment 1
with greyscale, luminance-matched versions of our style-transferred
stimuli (created using the SHINE toolbox in MATLAB?). Previous work
shows that neural networks trained to classify style do so in ways that
gobeyondthe colour distributions of theimages®, implying that style
perception might persist even without these features. Indeed, we
found that style tuning survives these low-level controls: participants
in experiment 3 were still faster (mean difference 267 ms, t(43) = 5.61,
P<0.001, d=0.85,95% Cl171-364 ms) and more accurate (mean dif-
ference 8.26%, t(43) =7.37, P<0.001, d=1.11, 95% CI 6.00-10.53%) on
same-style trials than mixed-style trials.

Finally, experiment 4 explored the timecourse of style tuning.
Instead of enumerating the mountain scenes by entering a single
response at the end of a trial, participants in this experiment clicked
on each target image with their cursor, thereby providing multiple
responses to analyse in each trial. We discovered that tuning accumu-
lates over the course of atrial: the furtherinto animage array, thelarger
the same-style advantage (r(376) = 0.27, P< 0.001, 95% C1 0.17-0.36).
To further examine this pattern, we fit a linear mixed-effects model
that predicts response times, with arandom effect of participant and
fixed effects of click index (that is, how many images were previously
clicked), trial type (same style or mixed style) and their interaction. We
hypothesized that the interaction of click index and trial type would
significantly predict response times, as expected if the same-style
advantage accumulates over time; indeed, this interaction was sig-
nificant (¢(711) = 3.25, P< 0.01). As before, participants were also faster
at same-style trials than mixed-style trials (mean difference 192 ms,
t(41)=5.89, P<0.001,d=0.91, 95% Cl 126-258 ms). Together, these
results demonstrate that style tuning exists, onsets rapidly, survives
low-level controls and accumulates over time.

Experiments 5and 6, style discounting

As noted earlier, our approach is to conceive of style perception as a
process that parses animage into two components: the content being
portrayed, and the manner in which it is portrayed. Perhaps the most
foundational example of such a process in visual perception is colour
constancy—the ability to perceive the ‘same’ reflectance properties
under different conditions of illumination®>?. For example, we can
seetheblue, yellow, red and green squares of aRubik’s cube, and they
will typically look to have those colours even across different lighting
conditions (for example, yellowish daylight or neutral fluorescent
light). Insuch cases, vision ‘discounts the illuminant’—essentially see-
ing through the lighting conditions to extract the underlying colour of

the surface being depicted. Recent work in experimental psychology
has shown that such discounting occurs even for higher-level visual
processes, such aswhen we ‘see through’ a cloth to discern the shape of
the object beneathit® (see alsoref.34). This process was investigated
using a change-detection task, wherein participants saw a sequence
of two images depicting cloth-covered objects. Changes were more
perceptible when the second image showed a different object draped
similarly (an‘underlying object change’) than when the second image
showed asimilar object draped differently (a“‘cloth change’), even when
these changes were equated on certain image metrics. Does a similar
process arise for style, and can it be studied the same way?

Experiments 5 and 6 adapted this design for style perception,
essentially asking whether vision engages in an analogous ‘style dis-
counting’ process (Fig.4).Inexperiment5, participants briefly viewed
an image (for example, a Van-Gogh-styled beach), which then disap-
peared and was replaced by anew image. Participants then had to say
whether the two images were the same or different from each other.
Half of trials depicted the same image, and the other half depicted a
different image. The different-image trials were themselves equally
splitbetweenimages depicting the same scene in a different style (for
example, the same beach but now in the style of Munch; style-change
trials), or a different scene in the same style (for example, a library in
the style of Van Gogh's Starry Night; scene-change trials). Following
previous work®, both change types were equated in terms of embed-
ding distancesin aconvolutional neural network (CNN; here, ResNet-18,
ref.29), such that the images were equally different from one another
(from the point of view of the CNN) across the two experimental con-
ditions. Nevertheless, participants performed significantly better at
scene-change trials than style-change trials (mean difference 16.83%,
t(86) =11.30, P<0.001, d=1.21, 95% C113.87-19.79%), as would be
expected if vision engages in style discounting.

Experiment 6 replicated this result with more extensive controls
for image similarity. Although experiment 5 equated the distance of
ResNetembeddings, itis possible that the change typesstill differed on
other lower-level image metrics. Thus, experiment 6 subsampled the
most similar scene-change pairs and least similar style-change pairs,
such that multiple image statistics—including mean-squared error of
pixel changes, structural similarity® and ResNet embeddings—were
not only similar but, if anything, would predict the opposite trend
(because scene-change pairs were more similar to one another on
average than style-change pairs). Remarkably, participants still per-
formed significantly better on scene-change trials (mean difference
12.90%, t(88) =9.44, P<0.001, d=1.00, 95% CI1 10.18-15.61%). This
provides especially compelling evidence for style discounting, a new
phenomenoninwhich perception sees through the style of animage to
extractits underlying content, in ways analogous to other discounting
processesinvision.

Experiments 7-9, style extrapolation

Whereas style tuning and style discounting suggest that the mind
extracts an image’s style to better perceive its content, we may also
extractanimage’s style for useinmental functions further downstream.
Inathird set of experiments, we explore how style affects memory, by
asking whether the mind extrapolates styles we have seen to anticipate
the appearance of completely unseen objects.

These experiments were inspired by semantic priming, the phe-
nomenon whereby semantic processing of one word spreads to other
words whose meanings are related*. While semantic priming effects
are often studied as small reaction-time benefits (for example, in lexi-
cal decision tasks), they may also manifest in false memories of words
onehasnotactually seen. Forexample, after reading the words ‘candy’,
‘taste’and ‘treat’, participants may misremember having seen the word
‘sweet’. Might a similar phenomenon arise in the perception of style?

Our next experiments adapted this task to style perception by
exploring false memories for members of sets of styled objects (Fig. 5).
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Task: Same or different?
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Fig. 4|Style discounting. In experiments 5and 6, participants judged whether
two sequentially appearing images were the same or different. We found that
changes to the underlying scene (with style held constant, shown in green)
were more detectable than changes to the style (with the underlying scene
held constant, shown in blue; experiment 5, N = 87), even when low-level image
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statistics would predict the opposite pattern (experiment 6, N = 89). This

effect mirrors other discounting effects in vision, demonstrating that visual
processing can subtract out the effects of style so as to represent the underlying
scene content. Data are presented as means + 95% Cls of the difference between
conditions. All statistical tests are paired, two-sided ¢-tests; ***P < 0.001.

Instead of the syntheticimages used in previous experiments, here we
used naturalisticimages of utensils (that is, forks, knives and spoons)
to ask whether the mind generates representations of new objects in
agiven style after previously seeing examples of other objects in that
same style (see alsoref. 28, which explores transfer of letter identities
to new typefaces). By extending our approach to naturalistic stimuli
(thatis, beyond the artificial stimuliin experiments 1-6), these experi-
ments also served to test the generality of our approach. The styles of
cutlery sets—and naturalistic objects more broadly—vary inways that
differ from neural style transfer: while artificial style transfer primarily
applies atextural transformation (and preserves, for example, global
shape and scene composition), naturally styled objects often vary
considerably in shape. In part for this reason, stimuli of this sort have
been the subject of considerable scholarly attention in the fields of
computer vision and machine learning® .

In experiment 7, participants first performed a simple identifi-
cation task in which they saw a series of utensils, one at a time, and
judged whether they were forks, knives or spoons. Then, participants
performed a recall task in which they saw an array of images (some
novel, some shown previously) and had to click the utensils they had
remembered seeing. Each participant was randomly assigned a ‘recall
utensil’ (either afork, knife or spoon) which determined the utensil in
the recall task (at the start of this experiment and experiment 8, par-
ticipants were explicitly informed that their memory for the utensils
wouldbe tested; this was not the case for experiment 9). Crucially, there
were three types of image in the recall task: (1) images that were seen
previously in the identification task (‘seen’); (2) images that were not
previously seen (‘unseen’); and (3) images that were not themselves
previously seen but that appeared in a style that was previously seen
(for example, amedieval knife, having previously seen amedieval fork
andspoon; ‘extrapolated’). We suspected that, just as participants who
see ‘candy’ and ‘taste’ misremember having seen ‘sweet’, participants

whoseeaforkandaspooninagivenstyle would misremember having
seen the knife in that style—a behaviour that draws on the capacity to
anticipate what a knife from that style would look like, despite never
having seenit before.

Indeed, participants falsely remembered seeing the recall utensil
for ‘extrapolated’ utensils significantly more often than for ‘unseen’
utensils (mean difference 29.87%, t(74) =11.43, P < 0.001,d =1.32,95%
Cl24.66-35.07%). This was not just due to poor memory for all utensils,
as participants also successfully remembered ‘seen’ utensils at a higher
rate than extrapolated utensils (mean difference 36.00%, t(74) = 15.48,
P<0.001, d=1.79, 95% Cl 31.37-40.63%). This result provides initial
evidence for style extrapolation: Toreliably select extrapolated utensils
(for example, the medieval knife) more often than unseen utensils sug-
gests that false memories for styled images arise in ways analogous to
other established memory phenomena. Moreover, italso indicates that
the mind generalizes the stylesitlearns to novel instances; to recognize
anobject asamedieval knife, one must have abstracted that style from
one or more seen examples (here, the medieval fork and spoon) to this
new instance (see also ref. 28).

An important confound in experiment 7 is image similarity:
because medieval knives look more similar to medieval forks and
spoons thanthey doto otherimages, false memories for those objects
could arise from that similarity alone (rather than from an internal
model of style applied to novel objects). Experiment 8 addressed this
confound by presenting participants with either one unique or two
unique examples of each style in the identification task, and compar-
ing performance between these two cases. Participants performed
the same task as in experiment 7, but here the trials were split as fol-
lows: For half of the styles shown, two unique examples were seen in
the identification task (for example, a medieval fork and a medieval
spoon); for the other half of styles shown, one unique example was seen
twice (for example, two medieval forks). Each set was also split evenly
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Fig. 5| Style extrapolation. In experiments 7-9, participants first identified
utensils, classifying them as forks, knives or spoons; then, they completed a recall
task in which they selected the utensils they remembered seeing. Experiment 7
(N=75) revealed false memories for objects that had not themselves appeared
earlierif other members of that cutlery set had appeared—suggesting that

the mind was able to extrapolate the style of seen utensils to anticipate the
appearance of other objects in that style. Experiment 8 (N = 90) controlled for
image similarity by presenting either two unique utensils of a given style (for
example, fork and spoon from one cutlery set), or two of the same utensils

from that style (for example, two forks from that cutlery set). Even though the
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presented objects and the lures (for example, the knife from that set) were
now equated across conditions, participants nevertheless had more false
memories after seeing two unique utensils than two of the same utensils,
further implicating a process whereby the mind generates representations of
new objectsin the style of previously seen ones. Experiment 9 (N = 92) showed
that such generation may occur automatically, because the effects arise even
when the recall task comes as a surprise to participants. Data are presented as
means * 95% Cls of the difference between conditions. All statistical tests are
paired, two-sided t-tests; ***P < 0.001; **P < 0.01; *P< 0.05.

across the ‘held-out’ utensil (that is, of the two-example styles, one
third depicted afork and aknife, one third depicted aforkand aspoon
and one third depicted a knife and a spoon). If style extrapolation is
merely explained by image similarity, then styles containing two unique
examples should behave similarly to styles containing one unique
example shown twice, because the presented images would be equally
similar to the held-out utensil in both cases. However, this is not what
we observed; instead, there were higher rates of false memories (that
is, higher rates of generating the held-out utensil) for styles contain-
ing two unique examples than styles containing one unique example
shown twice (mean difference 5.04%, t(89) =2.71, P< 0.01,d = 0.29,
95% C11.34-8.73%). Evidently, exposure to different instances of the
same style aids in extracting common stylistic features and applying
them to novel cases—as would be expected if style extrapolation goes
beyond image similarity.

Finally, we explored whether style extrapolation might occur
implicitly or unintentionally (perhaps as astrategy during encoding) by
making therecalltask asurprise. Whereas experiments 7 and 8 alerted
participantsto the upcomingrecall task at the start of the experiment,
experiment 9 presented the identification task without any further
context and then surprised participants with the recall task. Evenin this
case, participants extrapolated styles containing two unique examples

more thanstyles containing two of the same examples (mean difference
3.70%, t(91) =2.43, P=0.02, d = 0.25, 95% Cl1 0.68-6.71%). Thus, style
extrapolation occurs spontaneously; even whenthereis noindepend-
ent pressure to do so, the mind implicitly generates representations of
unseen objectsin the style of previously encountered ones.

Experiment 10, modelling style perception with

CNN embeddings

Our results thus far suggest that the mind adapts to, sees through and
extrapolates style. However, we also judge style more explicitly than
in the above contexts. For example, we may appreciate that a certain
Van Gogh painting is more stylistically similar to aMonet painting than
a Pollock painting (and incorporate these judgements into decisions
about which paintings to hang where in a gallery or collection). How
systematic and predictable are such judgements, and what is their
relationship to more basic mechanisms of visual perception?

In a final experiment, participants saw two style-transferred
images oneachtrial and simply rated their similarity ona 9-point scale
(Fig. 6). Each pair of images consisted of one scene type (for example, a
mountain) depicted in two different styles (for example, Van Gogh and
Monet). We modelled these judgements by extracting ResNet embed-
dings (that is, the network’s final layer before classification) for each
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Fig. 6| Modelling style perception with CNN embeddings. In experiment 10
(N=95), participants rated the similarity of pairs of styled images. We extracted
ResNet-18 embeddings for each image, which we then reduced to two dimensions
using t-SNE. Notice that the clusters produced by the embeddings are naturally

grouped by style rather than scene type. These embeddings also map on to
humanjudgements; similarity judgements decrease monotonically as t-SNE
distance between the judged images increases, both for each response and for
each style pair. Data are presented as means + 95% Cls for each group.

image in our style-transfer stimulus set and then reducing them from
512 dimensions to 2 dimensions using ¢-distributed stochastic neigh-
bour embedding (t-SNE*). This allowed visualization of the embed-
dings, following similar approaches elsewhere in this literature (for
example, separating human sketches by style or drawing pattern*?).
Evenbeforeincorporating humanjudgements, note that t-SNE creates
large, well-defined clusters that are naturally separated by style. This
may be expected given earlier work, including results from Karayev
et al.”>, who demonstrate that ImageNet models implicitly learn fea-
tures that can be used to classify style, as well asdemonstrations of the
salience of image style in neural network models***,

More relevant to our research question is how these similarities
track human judgements. While it is expected that the embeddings of
style-transferred images should naturally cluster by style rather than
scene type (given the training objective of style transfer), it is not obvi-
ous that the distance between these embeddings would match human
judgements in any particularly robust way. However, we found that
mean t-SNE distance for all image pairs grouped by similarity rating
(1-9) decreased monotonically (indeed, perfectly so; p=-1.0,P<0.001);
in other words, images that were rated as less similar by participants
consistently had more distant t-SNE embeddings (and this relationship
was stronger for t-SNE embedding distance between images than for
mean squared error (MSE) in pixel values between images; p=-0.85,
P <0.01). While there was already good reason to expect most of these
results, together they (1) dovetail with demonstrations showing that
artistic style may be salient to computer vision models*****, (2) show
that these models’ representations of style track with human judge-
ments of similarity across styles and (3) demonstrate that style not only
drives performance on the implicit tasks explored earlier but also
grounds explicit similarity judgements. (Note that style transfer models
may notencompass all aspects of stylistic variation. For example, such
models capture aspects of texture and colour, but not composition and
framing. See the ‘Discussion’ for more detail on future directions explor-
ing other models and approaches to style transfer.)

More generally, these results may guide future behavioural exper-
iments on style perception akin to experiments 1-9. For example,

one could further explore the abstractness of style tuning; would style
tuning be observed for impressionist-style images broadly, and not
just Monet or Van Gogh paintings? Our results could offer a helpful
guide for thisexperiment by informing the selection of styles that are
appropriately close together (or far away) in the embedding space.
In other words, cognitive questions concerning style perception (for
example, how abstractis style tuning?) can be usefully groundedin the
sort of computational approach taken here (for example, how close
do the embeddings of two styles have to be in order to observe style
tuning for both?).

Discussion

What s the psychological basis of our capacity to perceive style? The
results reported here explore how well-characterized cognitive mecha-
nisms in which the mind parses ‘content’ from ‘form’ underlie this abil-
ity and leave psychophysical traces of their operation. This approach
revealed several new phenomena of style perception that share key sig-
natures with these other parsing processes. Experiments 1-4 revealed
style tuning, whereby observers adapt to the style of scenes, leading to
increased processing fluency akin to font tuning and speech adapta-
tion. Experiments 5and 6 demonstrated style discounting, a processin
whichvision‘sees through’the style of asceneto discernits underlying
content. Experiments 7-9 explored downstream effects of style percep-
tion, through style extrapolation—a phenomenonin which perceived
styleisused to mentally render new objects (creating false memories of
having seen them). Finally, experiment 10 demonstrated that subjective
impressions of style are captured by computer vision models in ways
that could ground future behavioural experiments.

Our findings join a growing empirical literature at the inter-
section of visual art, perceptual psychology, and computational
aesthetics® %37 40434 While this literature has shed light on ques-
tions related to those we explore here (see also refs. 18-21,28,45-47),
uncovering the nature of style perception has remained an elusive
goal—in partowingto the lack of suitable tools to study it (for example,
methods for generating well-controlled styled images). By combining
classic psychophysical approaches withrecentadvancesingenerative
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artificialintelligence, our work helps to elucidate this process, showing
how style perception can arise from core psychological mechanisms
for parsing the content of animage fromits form.

The present work focuses on cases where the distinction between
style and content seems natural and intuitive. Of course, itis not always
trivial (or even sensible) to separate style from content in this way. In
many artistic contexts, styleis content inanimportant sense. And even
inthe design ofahome oratool, stylistic choices may carry functional
consequences. Nevertheless, the existence of such examples need not
detractfromthe cases where style and content separate more cleanly,
asinthe phenomenawe explore and investigate here.

Theseresults openthe door to further experimental investigations
of style perception. A natural extension would be to examine style per-
ceptionin other modalities. For example, just as the same village scene
may be depicted in different visual styles, so too can the same melody
or chord progression be realized in different auditory styles. Musical
style arguably respects the same distinction between ‘content’—the
underlying melody, perhaps as expressed in sheet music—and ‘form’—
the instruments used to play the melody, the character and emotion
withwhichtheinstruments are played, the musical genre they belong
toandsoon (see, for example, ref. 48). We speculate that musical style
might engage the same types of parsing processes inthe mind, leading
to the prediction that auditory style perception would share many of
the signatures we explore here (for example, listeners ‘tuning’ to the
style ofan orchestral melody in ways thatimprove detection of tempo
changes or errant notes).

Within the domain of visual style, further advances may be made
byloosening various constraints on style-transfer approaches to pro-
duce images with more variability. Our experiments used leading
neural style transfer models®** that render ascene in agiven style while
preserving its underlying composition. Thus, ‘style’ in such models
generally consists of changes in texture, colour and other lower- and
mid-level image features. However, artistic styles may also diverge in
even higher-level ways. For example, a different artist painting the same
scene may choose to vary which objects are present in the first place,
where they are located, what viewpoint they are seen from and so on.
Leading style-transfer models do not permit such variation; this iswhy
they were an appropriate choice for the controlled psychophysical
setting of our behavioural experiments, which were designed to vary
style while holding scene content constant. However, more recent
approaches to image synthesis (such as diffusion models) could cap-
ture these additional aspects of artistic style (for example, ref. 49),
openingthe door for new questions—but also new methodological chal-
lenges—concerning the perception and representation of artistic style.

More generally, our work here shows how seemingly abstract or
rarefied questions about human creativity and expression may be
bound up with more basic psychological capacities-and how quantita-
tive and experimental approaches can complement more qualitative
or humanistic traditions to shed light on questions of interest to both.

Methods

General methods (all experiments)

Readers can experience all of our experiments, in the same way as our
participants did, at https://perceptionresearch.org/style. All sample
sizes, designs and analysis plans were preregistered; these preregistra-
tions, along with the stimuli, experimental code, dataand analysis code
areavailable at https://osf.io/mb3nh/.

Participants. All participants were adults recruited from the online
platform Prolific (for a discussion of the reliability of this participant
pool,seeref.50). We coded each experiment using Hypertext Markup
Language (HTML), Cascading Style Sheets (CSS) and JavaScript (JS)
and then posted our web experiments on Prolific for participants to
complete. Experiments 1-4 recruited 50 participants each; experi-
ments 5-10 recruited 100 participants each. Sample sizes were chosen

to be sufficiently large on the basis of pilot studies we conducted. All
participantsin eachexperiment were unique; no participant completed
multiple experiments. Participants received financial compensation
upon completing the experiment. The experiments were approved by
the Homewood Institutional Review Board of Johns Hopkins Univer-
sity (HIRBO0005762). All participants in these experiments provided
consent for their participation. In all experiments, participants who
did not submit a complete dataset were excluded.

Style-transfer stimuli (experiments 1-6 and 10). We created a stimu-
lus set of artificially styled scenes using the style-transfer model from
ref. 27. We used the model to apply six styles from famous paintings
(Demuth’s Trees and Barns Bermuda, Van Gogh’s Starry Night, Klimt’s
TheKiss,Monet’s Water Lilies, Pollock’s Number 1, 1949, and Munch’s The
Scream) to images of four different scene types (beaches, bedrooms,
libraries and mountains). We chose these styles because they were
prominent and even famous, while also still being sufficiently differ-
ent from one another. Each scene type contained 64 images from the
stimulus setinref. 30. This resulted in a style-transferred stimulus set
of1,536images; all theseimages, along with the code needed to run the
style-transfer model, are available in our data archive.

Utensil stimuli (experiments 7-9). Along with our style-transfer stim-
uli, we created a stimulus set of naturally styled objects, specifically
sets of cutlery. We gathered images of 30 sets of cutlery from various
online sources. The sets of cutlery come from a range of styles (for
example, some depict kids cutlery, some depict plastic cutlery, some
depict medieval cutlery and so on).

Experiment 1, style tuning

Stimuli and procedure. Participants completed 200 trials of our
style tuningtask. At the start of the experiment, each participant was
randomly assigned a target scene type (either beaches, bedrooms,
libraries or mountains); this determined the scene type they had to
count in each trial. Each trial contained an array of nine images laid
out horizontally, with the specific scenes randomly chosen (such
that the target scene type was betweenland 9; distractor scenetypes
were also chosen randomly). Participants had to count how many
times the target scene appeared in the array and thenrespond using
their keyboard.

Half of trials contained scenes of all the same randomly chosen
style (that is, for each of 100 same-style trials, a random style was
chosen from our set of 6 styles, and then all 9 images appeared in that
style). The other half of trials contained scenes of multiple different
styles, chosen randomly for each image. The order of same-style and
mixed-style trials was shuffled randomly for each participant. Partici-
pantsreceived feedback at the end of each trial.

This study was preregistered on 31 August 2023 (https://aspre-
dicted.org/kv3v-z8nv.pdf).

Exclusions. We excluded participants who responded correctly on
less than 30% of trials. This excluded six participants total. Then, we
excluded trials with response times below 200 ms or above 10,000 ms;
this excluded 741 of the remaining 8,800 trials.

Results. Asreported in the main text, participants were significantly
faster at enumerating scenes in same-style trials than in mixed-style
trials (mean difference 289 ms, ¢(43) =4.93, P< 0.001, d = 0.74, 95%
Cl171-407 ms; this and all other t-tests reported here are two-tailed
dependent-samples tests over participant-level means). This analy-
sis was performed only over trials in which participants responded
correctly. Participants were also significantly more accurate on
same-style trials than on mixed-style trials (mean difference 6.74%;
t(43)=6.10, P<0.001,d=0.92, 95% CI 4.51-8.97%; preregistered as
asecondary analysis).
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Experiment 2, style tuning for varying array length
Stimuli and procedure. The task in experiment 2 was the same as in
experiment1except as noted below. Instead of all trials presenting nine
images, here trials presented different numbers of images. The 200 tri-
alswere equally splitamongarrays of 3images, 5images, 7images and
9images. This balance was preserved across same- or mixed-style trials;
in other words, of the 100 same-style trials, 25 contained 3 images, 25
contained 5images, 25 contained 7images and 25 contained 9 images.
This study was preregistered on 10 September 2023 (https://
aspredicted.org/fpkz-qpmk.pdf).

Exclusions. We excluded participants who responded correctly onless
than 40% of trials. Note that this accuracy criterion is higher than in
experiment1; thisisbecause the task s easier, as chance performance
is higher on trials with fewer images. This excluded two participants.
Two additional participants were excluded because they did not com-
plete the experiment. As before, we excluded trials with response
times below 200 ms or above 10,000 ms, which resulted in excluding
2410f9,200 trials.

Results. Collapsing across all image-array sizes, we observed sig-
nificantly faster response times on same-style trials than mixed-style
trials (mean difference 123 ms, t(45) = 3.53, P< 0.001, d = 0.52, 95%
Cl 53-193 ms). Accuracy was also higher on same-style trials than
on mixed-style trials (mean difference 4.33%, t(45) =4.50, P< 0.001,
d=0.66,95% Cl2.39-6.27%). Finally, we observed either significantly
or marginally significantly faster response times for three-image
trials (mean difference 98 ms, ¢(45) =2.53, P=0.02, d = 0.37, 95% CI
20-176 ms), five-image trials (mean difference 108 ms, £(45) =1.93,
P=0.06,d=0.28,95% Cl -5 to 221 ms), seven-image trials (mean dif-
ference 197 ms, t(45) =3.15, P<0.01, d = 0.46, 95% Cl 71-323 ms) and
nine-image trials (mean difference 89 ms, t(45) =1.36, P=0.18,d=0.20,
95% CI -42 to 220 ms). Note that the experiment was not powered to
test these specific subsample differences, and thus these latter analyses
are purely exploratory.

Experiment 3, style tuning with colour and luminance controls
Stimuli and procedure. This experiment proceeded the same way as
experiment 1; the only difference was in the stimuli. Whereas experi-
ment 1presented stimuli that varied in colour and luminance (simply
using the output of the style-transfer method), experiment 3 presented
greyscale, luminance-matched versions of those stimuli (created using
the SHINE toolbox in MATLAB™).

This study was preregistered on 13 September 2023 (https://
aspredicted.org/5v4x-rhw2.pdf).

Exclusions. Exclusion criteria here were the same as in experiment
1: participants were excluded if their accuracy was below 30% (which
excluded 6 participants), and trials were excluded for response times
below200 msorabove 10,000 ms (whichexcluded 721 0f 8,800 trials).

Results. Asinexperiment1, participants were significantly faster (mean
difference 267 ms, t(43) =5.61, P< 0.001, d = 0.85,95% C1171-364 ms)
and more accurate (mean difference 8.26%, t(43) = 7.37, P< 0.001,
d=1.11,95% Cl6.00-10.53%) on same-style trials than mixed-style trials.

Experiment 4, the time course of style tuning

Stimuli and procedure. The stimuli here were the same as in experi-
ment1,and, as before, participants were assigned atarget scene type at
the start of their experiment. However, instead of counting the number
oftimes thetarget scene appearsinanarray of nineimages, participants
used their mouse to click on each of the target scene images. When a
participant was satisfied and thought they had clicked all the images of
the target scene type, they could advance to the next trial by pressing
‘enter’ ontheir keyboard. At the end of each trial, participants received

feedback, alerting them of both incorrect clicks (that is, false alarms)
and incorrect non-clicks (that is, misses).

This study was preregistered on 14 September 2023 (https://
aspredicted.org/95g8-cmgv.pdf).

Exclusions. Participants with accuracy below 40% were excluded
(resulting in four exclusions). Four additional participants were
excluded for not completing the experiment. Note that we defined
a‘correct’ trial as one where the participant clicks on all the correct
scenes and only those scenes (and, thus, has no false alarms or misses).
Thisaccuracy criterionwas higher thanin experiments1and 3 because
the responses were slower and more intentional (that is, participants
could unclick and double-check their responses). Trials witharesponse
time below 200 ms or above 10,000 ms were excluded (resulting in
1,201 0f 8,400 trials being excluded).

Results. Total response time—that is, from the presentation of the
images until the participant pressed ‘enter’—was faster for same-style
trials than for mixed-style trials (mean difference 192 ms, t(41) = 5.89,
P<0.001, d=0.91, 95% Cl 126-258 ms). Participants were also more
accurate on same-style trials (mean difference 6.94%, t(41) = 6.93,
P<0.001,d=1.07,95%C14.92-8.96%). Crucially, however, we also ana-
lysed our databy clickindex toinvestigate how style tuning evolves over
time. We fit a linear mixed-effects model predicting response times,
witharandom effect of participant and fixed effects of clickindex (that
is,how many images were previously clicked), trial type (same style or
mixed style) and their interaction. We found a significant interaction
betweenclickindex and trial type (£(711) = 3.25, P< 0.01). Asexpected,
the fixed effect of click index was significant, as it takes more time to
click more images (¢(711) = 69.64, P < 0.001), and the fixed effect of
trial type was not significant, suggesting that such a tuning advantage
indeed evolves over time (that is, it is not present immediately at the
onsetofatrial; ¢(711) = 0.63, P= 0.53). (Given that these two parameters
on their own have no bearing on the question of this experiment, we
did not preregister their analysis and merely include them for thor-
oughness here.) More importantly, we found a significant correlation
betweenclickindex and same-style advantage on the participant level
(r(376) = 0.27, P< 0.001, 95% CI 0.17-0.36), such that the same-style
advantage increased as click index increased.

Experiment 5, style discounting
Stimuli and procedure. We used the luminance-matched stimuli from
experiment 3 in a same-different task to examine style discounting.
On each trial, a base image appeared for 850 ms, followed by a blank
screen for 750 ms, followed by a new image, which stayed visible until
response. The two images appeared in random locations, and also with
randomrotations foreach trial; the rotationswereintroduced to make the
task more difficult so that participants would make errors (whichare the
targets of our analyses). Participants had to say whether the two images
were the same or different (irrespective of rotation; thatis, animage and
its 90°-rotated version are the same image for this purpose). They made
this response using their keyboard (‘S for same, ‘D’ for different).

Participants completed 100 trials of this task. In 50 of the trials,
the two images were the same, and in 50 of the trials the two images
were different. Among the 50 trials depicting two different images,
25 depicted the same scene as the base image, but in a different style
(style-change trials); and 25 depicted a different scene from the base
image, but in the same style (scene-change trials). The order of trials
was randomly shuffled for each participant.

Thisstudy was preregistered on15November 2023 (https://aspre-
dicted.org/c6b9-4jh8.pdf).

Exclusions. We excluded participants who did not perform accurately
on at least 75% of trials, resulting in 11 exclusions. Two additional par-
ticipants were excluded for failing to complete the experiment.
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Results. Participants were more accurate on scene-change trials than
style-change trials (mean difference 16.83%, t(86) =11.30, P< 0.001,
d=1.21,95% C113.87-19.79%). They were also numerically faster on
scene-change trials, although this trend was not significant (mean
difference 17 ms, t(86) =1.45, P=0.15,d = 0.16, 95% Cl -6 to 41 ms). In
addition, wereport anunbiased measure of sensitivity,d’. Thisrevealed
high sensitivity for scene-change trials over style-change trials (mean
participantd’ =1.88,95% Cl1.75-2.01), confirming our accuracy-based
metrics. Note that this d’ analysis was not preregistered and, thus, is
purely exploratory; however, it suggests that our results still hold with
unbiased measures.

Experiment 6, style discounting with balanced metrics
Stimuli and procedure. Participants performed the same task from
experiment 5. However, we subsampled our stimulus set to contain
only the 25 most similar pairs of scene-change images, and the 25
least similar pairs of style-change images. This resulted in a stimulus
set where the MSE of the pixel values, structural similarity and ResNet
embedding distance all rated scene-change pairs as more similar than
style-change pairs. Theimage metrics calculated for all relevant pairs of
images are available in our Open Science Framework (OSF) repository.
This study was preregistered on 20 November 2023 (https://
aspredicted.org/43pc-xt3d.pdf).

Exclusions. As in experiment 5, we excluded participants who
responded correctly on less than 75% of trials, resulting in ten exclu-
sions. One additional participant was excluded for failing to complete
the experiment.

Results. As before, participants were more accurate on scene-change
trials (mean difference 12.90%, ¢(88) = 9.44, P< 0.001, d =1.00, 95%
Cl10.18-15.61%). Participants were also faster on scene-change tri-
als (mean difference 55 ms, ¢(88) =3.53, P< 0.001, d = 0.37, 95% CI
24-87 ms). As above, these results were confirmed by an explora-
tory analysis using d’, an unbiased measure (mean participant d’ for
scene-change versus style-change trials 2.42, 95% C12.28-2.56).

Experiment 7, style extrapolation
Stimuli and procedure. The experiments for style extrapolation use
the utensil stimuli described above.

This experiment consisted of two parts: an identification task
and arecall task. In the identification task, participants saw images of
utensils, one at a time, and simply classified them as forks, knives or
spoons by pressing ‘F’, ‘K’ or ‘S’ on their keyboards. After completing
the identification task, participants were then given the recall task,
which consisted of multiple trials each displaying a3 x 2 grid of utensil
images. Participants were explicitly told that arecall task would follow
theidentification task. Each trial of the recall task had the same utensil
types—thatis, all forks, all knives or all spoons, randomly decided for
each participant (we refer to this utensil type as the ‘recall’ utensil).
Participants were simply instructed to click on the images they had
remembered seeingin the identification task and leave unclicked any
images they had not seen.

The images appearing in each of these tasks were chosen very
intentionally, and as follows (with these choices and parameters not
revealed to participants). Among the 30 styles in our stimulus set, 10
were chosen to be left out of the identification task (we refer to these
as the ‘unseen’ styles). Of the remaining 20 styles, 10 contained two
instances of the recall utensil in the identification task (‘seen’ styles)
and 10 contained two examples of the two non-recall utensils in the
identification task (‘extrapolated’ styles). For example, if the recall
utensil for agiven participant was aknife, then that participant would,
intheiridentification task, see: zeroimages of any kind from styles 1-10;
20 knives from styles11-20 (10 knives, each appearing twice); and one
fork and one spoon each from styles 21-30.

Then, in that participant’s recall task, they would see 30 images
of’knives, one from each style. Of those 30 images of knives, 10 would
have actually appeared in the identification task (‘seen’); 10 would
have came from styles that appearedin theidentification task as forks
and knives, even though the knives from that style did not appear
themselves but the recall utensil itself did not appear in that style
(‘extrapolated’); and 10 would have been genuinely novel, neither hav-
ing appeared in the identification task themselves, nor any members
of their style having appeared in the identification task (‘unseen’).

The order of the identification trials, the position of the utensils
inthe recall grid and the order of the recall trials were all randomized.

This study was preregistered on 13 November 2023 (https://
aspredicted.org/fpsn-yrdj.pdf).

Exclusions. We excluded participants who responded correctly onless
than 90% of trialsin theidentification task, or got less than 66% of trials
in the recall task correct. Five participants were excluded because of
their performanceintheidentification task,and19 more were excluded
for their performancein the recall task. One additional participant was
excluded for failure to complete the experiment.

Results. Participants had a significantly higher false-positive rate for
extrapolated images than for unseenimages (mean difference 29.87%,
t(74) =11.43, P<0.001, d =1.32, 95% Cl 24.66-35.07%). This positive
response rate was in turn significantly lower than the positive responses
for the seenimages (whichin this case, are correct responses; mean dif-
ference 36.00%, t(74) =15.48,P< 0.001,d =1.79,95% C131.37-40.63%).

Experiment 8, style extrapolation, equating image similarity
Stimuli and procedure. As in experiment 7, this task contained two
parts. However, the styles were split differently thanin that experiment.
Here, among the 30 styles, 15 contributed two of the same examples
inthe identification task (for example, two forks) and 15 contributed
two unique examples (for example, a fork and a knife). Furthermore,
rather than being tested on just one recall utensil, participants in this
task were tested onrecalling all three utensils. The 15 styles of each kind
were then equally split by recall utensil: 5 held out the fork, 5 held out
the knife and 5 held out the spoon. As before, the styles in each condi-
tionwere randomly chosen for each participant.

Because of these changes in style, the identification task now
contained 60 trials (as each of 30 styles contributed two images). Then,
therecalltask consisted of ten trials, each displaying siximagesin the
grid. Halftheimages appearedin the identification task, and half were
new.Asbefore, the number of newimages was randomized in each trial
betweenland 5inaway that summed to 30 across the 10 trials.

As stated in the main text, our prediction was that participants
would be more likely to misremember having seen a given utensil (for
example, the medieval knife) if they had previously seen both other
utensils from that style (for example, the medieval fork and the medi-
evalspoon) thanifthey had previously seen only one other utensil from
that set twice (for example, the medieval fork twice). This procedure
thus equates forimage similarity and frequency of exposure toimages
from a given style, ensuring that false memories of the additional
utensil truly reflect style extrapolation.

This study was preregistered on 18 October 2023 (https://
aspredicted.org/p89s-gtkf.pdf).

Exclusions. We excluded participants who scored below 90% on the
identification task, or below 50% on the recall task. This recall exclusion
criterion was more lenient than in experiment 8 because this task is
harder thanthe previous one (thatis, the lures are more similar to the pre-
viously seen utensils). One participant was excluded on the basis of their
performance in the identification task, and seven more were excluded
onthe basis of their performance in the recall task. Two additional par-
ticipants did not complete the experiment and were thus excluded.
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Results. Participants had higher rates of false memories for styles
containing two unique examples than for styles containing two exam-
ples of the same utensil (mean difference 5.04%, t(89) =2.71, P< 0.01,
d=0.29,95% C11.34-8.73%).

Experiment 9, implicit style extrapolation
Stimuli and procedure. Thistask was exactly the same as experiment 8.
The only difference was that, whereas in experiment 8 participants were
told at the start of the experiment (that is, before the identification
task) that they would later be tested on their memory of the utensils,
here participants were not alerted of the upcoming recall task, such
thatit came as asurprise.

This study was preregistered on 17 October 2023 (https://
aspredicted.org/6ngy-g3xs.pdf).

Exclusions. Exclusions were the same asin experiment 8. Three partici-
pants were excluded because of poor performance in the identification
task, and three more were excluded because of poor performance in
therecall task. Two additional participants were excluded because they
did not complete the experiment.

Results. Asin experiment 8, participants had more false positives for
styles containing two unique examples than for styles containing two
examples of the same utensil (mean difference 3.70%, t(91) =2.43,
P=0.02,d=0.25,95%Cl1 0.68-6.71%).

Experiment 10, predicting stylistic judgements
Stimuli and procedure. On each trial of this experiment, participants
saw twoimages (from our greyscale, luminance-matched style-transfer
stimuli) and rated how similar they were on a 9-point scale using their
keyboard. Participants completed 100 such trials; in each trial, the two
images were chosen randomly such that they depict the same scene
type (for example, both depict beaches) but in different styles.

This study was preregistered on 24 January 2024 (https://aspre-
dicted.org/m439-g7d5.pdf).

Exclusions. We excluded participants who responded with the
same number in over 50 trials; this excluded 5 participants. Then, we
excluded trials with a response time below 200 ms (which excluded
129 0f 9,500 remaining trials).

Embeddings. We computed embeddings for eachimage inthe stimulus
set as follows. First, we extracted ResNet embeddings for each image
(thatis, the final layer of ResNet classification). These embeddings are
512-dimensional; we reduced them to 2 dimensions by first transform-
ing the 512 dimensions into 50 dimensions with principal component
analysis (PCA), then transforming those 50 dimensions into 2 with
t-SNE*.. (The PCA transformation was done because t-SNE is typically
thought to be unstable above 50 dimensions.) We then computed
Euclidean distance between images in this two-dimensional embed-
ding space. We also calculated the MSE in pixel values between any two
images in the dataset for model comparison.

Note thatall correlations regarding the human-response dataare
Spearmanrank-order correlation tests (and not Pearson’s correlation
tests) because we are concerned with monotonicity and not linearity.
Furthermore, we make no assumptions about the distribution of the
variables and, thus, prefer the non-parametric test. We found that the
mean t-SNE distance had a significant monotonic relationship with
judgedsimilarity (p = -1.0). Meanwhile, the rank-order correlation with
MSE was weaker (p = —0.85). We also computed the mean response and
distances for each pair of styles (of which there are 15); this relationship
was p=-0.46 for t-SNE distances and p =-0.37 for MSE.

Data availability
All data and materials are available via OSF at https://osf.io/mb3nh/.

Code availability
All code is available via OSF at https://osf.io/mb3nh/.
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